H-E_{e}(r) = k_{e,h}q_{e}·( r^{n}/d_{t}[r]^{n} )
H-E_{g}(r) = (-1)·k_{g,h}q_{g}·( r^{n}/d_{t}[r]^{n} )
H-B_{e}(r) = k_{e,h,m}q_{e}·( d_{tt}^{2}[r]^{n}/d_{t}[r]^{n} )
H-B_{g}(r) = (-1)·k_{g,h,m}q_{g}·( d_{tt}^{2}[r]^{n}/d_{t}[r]^{n} )
ones de so sense massa: m=0
camp emisor:
H-E_{e}(r) + H-B_{e}(r) = 0 <==> ...
... r(t) = ( sinh( e^{(1/n)·(pi·i)}(kq/kq)t )+ cosh( e^{(1/n)·(pi·i)}(kq/kq)t ) )
camp receptor:
H-E_{e}(r) + H-B_{g}(r) = 0 <==> ...
... r(t) = ( sinh( e^{(1/n)·(2pi·i)}(kq/kq)t )+ cosh( e^{(1/n)·(2pi·i)}(kq/kq)t ) )
camp receptor:
H-E_{g}(r) + H-B_{e}(r) = 0 <==> ...
... r(t) = ( sinh( e^{(1/n)·(2pi·i)}(kq/kq)t )+ cosh( e^{(1/n)·(2pi·i)}(kq/kq)t ) )
camp emisor:
H-E_{g}(r) + H-B_{g}(r) = 0 <==> ...
... r(t) = ( sinh( e^{(1/n)·(pi·i)}(kq/kq)t )+ cosh( e^{(1/n)·(pi·i)}(kq/kq)t ) )
sábado, 25 de enero de 2020
algebra: suma per diferencia
( 1/(x^{2}+(-1)·a^{2}) ) = (1/2a)·( 1/(x+(-a)) )+(-1)(1/2a)·( 1/(x+a) )
( 1/(x^{2}+a^{2}) ) = (1/2ai)·( 1/(x+(-a)i) )+(-1)(1/2ai)·( 1/(x+ai) )
(x^{2}+(-1)·a^{2}) = (x+a)(x+(-a))
(x^{2}+a^{2}) = (x+ai)(x+(-a)i)
( c/(x^{2}+(-1)·a^{2}) ) = (c/2a)·( 1/(x+(-a)) )+(-1)(c/2a)·( 1/(x+a) )
( c/(x^{2}+a^{2}) ) = (c/2ai)·( 1/(x+(-a)i) )+(-1)(c/2ai)·( 1/(x+ai) )
( (cx)/(x^{2}+(-1)·a^{2}) ) = (c/2)·( 1/(x+(-a)) )+(c/2)·( 1/(x+a) )
( (cx)/(x^{2}+a^{2}) ) = (c/2)·( 1/(x+(-a)i) )+(c/2)·( 1/(x+ai) )
( 1/(x^{2}+a^{2}) ) = (1/2ai)·( 1/(x+(-a)i) )+(-1)(1/2ai)·( 1/(x+ai) )
(x^{2}+(-1)·a^{2}) = (x+a)(x+(-a))
(x^{2}+a^{2}) = (x+ai)(x+(-a)i)
( c/(x^{2}+(-1)·a^{2}) ) = (c/2a)·( 1/(x+(-a)) )+(-1)(c/2a)·( 1/(x+a) )
( c/(x^{2}+a^{2}) ) = (c/2ai)·( 1/(x+(-a)i) )+(-1)(c/2ai)·( 1/(x+ai) )
( (cx)/(x^{2}+(-1)·a^{2}) ) = (c/2)·( 1/(x+(-a)) )+(c/2)·( 1/(x+a) )
( (cx)/(x^{2}+a^{2}) ) = (c/2)·( 1/(x+(-a)i) )+(c/2)·( 1/(x+ai) )
limits de funcions II
lim [ x --> a ]-[ ( (x^{2}+(-1)·a^{2})/(x+(-a)) ) ] = 2a
lim [ x --> (-a) ]-[ ( (x^{2}+(-1)·a^{2})/(x+a) ) ] = (-2)a
lim [ x --> ai ]-[ ( (x^{2}+a^{2})/(x+(-a)i) ) ] = 2ai
lim [ x --> (-a)i ]-[ ( (x^{2}+a^{2})/(x+ai) ) ] = (-2)ai
lim [ x --> 1 ]-[ ( ( a_{1}x+...(n)...+a_{n}x^{n}+(-1)·∑ ( a_{k} ) )/(x+(-1)) ) ] = ∑ ( a_{k}·k )
lim [ x --> 1 ]-[ ( ( a_{1}x+...(n)...+a_{n}x^{(1/n)}+(-1)·∑ ( a_{k} ) )/(x+(-1)) ) ] = ∑ ( a_{k}·(1/k) )
limits de funcions
lim [ x --> 1 ]-[ ( (x^{n}+(-1))/(x+(-1)) ) ] = n
lim [ x --> 1 ]-[ ( (x^{(1/n)}+(-1))/(x+(-1)) ) ] = (1/n)
lim [ x --> 1 ]-[ ( (x^{n}+(-1))/(x^{m}+(-1)) ) ] = (n/m)
lim [ x --> 1 ]-[ ( (x^{(1/n)}+(-1))/(x^{(1/m)}+(-1)) ) ] = (m/n)
lim [ x --> 1 ]-[ ( ( (x+(-1))·...(n)...·(x^{n}+(-1)) )/(x+(-1))^{n} ) ] = n!
lim [ x --> 1 ]-[ ( ( (x+(-1))·...(n)...·(x^{(1/n)}+(-1)) )/(x+(-1))^{n} ) ] = (1/n!)
lim [ x --> 1 ]-[ ( ( x+...(n)...+x^{n}+(-n) )/(x+(-1)) ) ] = ∑ k = (1/2)·n(n+1)
lim [ x --> 1 ]-[ ( ( x+...(n)...+x^{(1/n)}+(-n) )/(x+(-1)) ) ] = ∑ (1/k)
lim [ x --> 0 ]-[ ( ( 1^{x}+...(n)...+n^{x}+(-n) )/x ) ] = ln(n!)
lim [ x --> 0 ]-[ ( ( 1^{x}+...(n)...+(1/n)^{x}+(-n) )/x ) ] = (-1)·ln(n!)
indicacions:
(x^{n}+(-1)) = (x+(-1))·(1+...(n)...+x^{(n+(-1))})
(x+(-1)) = (x^{(1/n)}+(-1))·(1+...(n)...+x^{( (n+(-1))/n )})
a^{x} = e^{ln(a)·x}
lim [ x --> 1 ]-[ ( (x^{(1/n)}+(-1))/(x+(-1)) ) ] = (1/n)
lim [ x --> 1 ]-[ ( (x^{n}+(-1))/(x^{m}+(-1)) ) ] = (n/m)
lim [ x --> 1 ]-[ ( (x^{(1/n)}+(-1))/(x^{(1/m)}+(-1)) ) ] = (m/n)
lim [ x --> 1 ]-[ ( ( (x+(-1))·...(n)...·(x^{n}+(-1)) )/(x+(-1))^{n} ) ] = n!
lim [ x --> 1 ]-[ ( ( (x+(-1))·...(n)...·(x^{(1/n)}+(-1)) )/(x+(-1))^{n} ) ] = (1/n!)
lim [ x --> 1 ]-[ ( ( x+...(n)...+x^{n}+(-n) )/(x+(-1)) ) ] = ∑ k = (1/2)·n(n+1)
lim [ x --> 1 ]-[ ( ( x+...(n)...+x^{(1/n)}+(-n) )/(x+(-1)) ) ] = ∑ (1/k)
lim [ x --> 0 ]-[ ( ( 1^{x}+...(n)...+n^{x}+(-n) )/x ) ] = ln(n!)
lim [ x --> 0 ]-[ ( ( 1^{x}+...(n)...+(1/n)^{x}+(-n) )/x ) ] = (-1)·ln(n!)
indicacions:
(x^{n}+(-1)) = (x+(-1))·(1+...(n)...+x^{(n+(-1))})
(x+(-1)) = (x^{(1/n)}+(-1))·(1+...(n)...+x^{( (n+(-1))/n )})
a^{x} = e^{ln(a)·x}
viernes, 24 de enero de 2020
series númeriques
teorema:
Si ( a_{n} >] 0 & ∑ ( n·a_{n} ) < oo ) ==> ∑ ( a_{n} ) < oo
demostració:
∑ ( a_{n} ) [< ∑ ( n·a_{n} ) < oo
teorema:
Si ( a_{n} >] 0 & ∑ ( a_{n} ) < oo ) ==> ∑ ( (1/n)·a_{n} ) < oo
demostració:
∑ ( (1/n)·a_{n} ) [< ∑ ( a_{n} ) < oo
Si ( a_{n} >] 0 & ∑ ( n·a_{n} ) < oo ) ==> ∑ ( a_{n} ) < oo
demostració:
∑ ( a_{n} ) [< ∑ ( n·a_{n} ) < oo
teorema:
Si ( a_{n} >] 0 & ∑ ( a_{n} ) < oo ) ==> ∑ ( (1/n)·a_{n} ) < oo
demostració:
∑ ( (1/n)·a_{n} ) [< ∑ ( a_{n} ) < oo
series numériques
teorema:
Si 0 < a_{n} < 1 ==> ∑ ( a_{n} ) < oo
demostració:
∑ ( a_{n} ) < 1+...(oo)...+1 = oo
teorema:
Si ( m€N & 0 < a_{n} < m ) ==> (1/m)·∑ ( a_{n} ) < oo
demostració:
∑ ( a_{n} ) < m+...(oo)...+m = m·oo
Si 0 < a_{n} < 1 ==> ∑ ( a_{n} ) < oo
demostració:
∑ ( a_{n} ) < 1+...(oo)...+1 = oo
teorema:
Si ( m€N & 0 < a_{n} < m ) ==> (1/m)·∑ ( a_{n} ) < oo
demostració:
∑ ( a_{n} ) < m+...(oo)...+m = m·oo
series numériques
teorema:
Si ( a_{n} >] 0 & m€N & ∑ ( m·a_{n} ) < oo ) ==> ∑ ( a_{n} ) < oo
demostració:
m·∑ ( a_{n} ) = ∑ ( m·a_{n} ) < oo
∑ ( a_{n} ) < (oo/m) < oo
teorema:
Si ( a_{n} >] 0 & ∑ ( oo·a_{n} ) < oo ) ==> ∑ ( a_{n} ) < 1
demostració:
oo·∑ ( a_{n} ) = ∑ ( oo·a_{n} ) < oo
∑ ( a_{n} ) < (oo/oo) = 1
Si ( a_{n} >] 0 & m€N & ∑ ( m·a_{n} ) < oo ) ==> ∑ ( a_{n} ) < oo
demostració:
m·∑ ( a_{n} ) = ∑ ( m·a_{n} ) < oo
∑ ( a_{n} ) < (oo/m) < oo
teorema:
Si ( a_{n} >] 0 & ∑ ( oo·a_{n} ) < oo ) ==> ∑ ( a_{n} ) < 1
demostració:
oo·∑ ( a_{n} ) = ∑ ( oo·a_{n} ) < oo
∑ ( a_{n} ) < (oo/oo) = 1
series númeriques mitjes
teorema:
Si ( a_{n} >] 0 & b_{n} >] 0 & ∑ ( a_{n} ) < oo & ∑ ( b_{n} ) < oo ) ==> ...
... ∑ ( (a_{n}+b_{n})/2 ) < oo
demostració:
∑ ( a_{n}+b_{n} ) = ∑ ( a_{n} ) + ∑ ( b_{n} ) < 2·oo
teorema:
Si ( a_{n} >] 0 & b_{n} >] 0 & ∑ ( a_{n} ) < oo & ∑ ( b_{n} ) < oo ) ==> ...
... ∑ ( (a_{n}·b_{n})^{(1/2)} ) < oo
demostració:
∑ ( (a_{n}·b_{n})^{(1/2)} ) [< ∑ ( (a_{n}+b_{n})/2 ) < oo
Si ( a_{n} >] 0 & b_{n} >] 0 & ∑ ( a_{n} ) < oo & ∑ ( b_{n} ) < oo ) ==> ...
... ∑ ( (a_{n}+b_{n})/2 ) < oo
demostració:
∑ ( a_{n}+b_{n} ) = ∑ ( a_{n} ) + ∑ ( b_{n} ) < 2·oo
teorema:
Si ( a_{n} >] 0 & b_{n} >] 0 & ∑ ( a_{n} ) < oo & ∑ ( b_{n} ) < oo ) ==> ...
... ∑ ( (a_{n}·b_{n})^{(1/2)} ) < oo
demostració:
∑ ( (a_{n}·b_{n})^{(1/2)} ) [< ∑ ( (a_{n}+b_{n})/2 ) < oo
jueves, 23 de enero de 2020
álgebra: ecuacions polinomiques II
ax^{p}+ax^{q} = ax^{[..(1)..[ p+(-q) ]..(1)..]+q}
ax^{p}+ax^{q} = c
x = (c/a)^{( 1/( [..(1)..[ p+(-q) ]..(1)..]+q ) )}
ax^{p}+bx^{q} = ax^{[..(b/a)..[ p+(-q) ]..(b/a)..]+q}
ax^{p}+bx^{q} = c
x = (c/a)^{( 1/( [..(b/a)..[ p+(-q) ]..(b/a)..]+q ) )}
x^{p}+mx = c
x = c^{( 1/( [..(m)..[ p+(-1) ]..(m)..]+1 ) )}
x = c^{( 1/( log[x](x^{(p+(-1))}+m)+1 ) )}
x^{p}+mx = (1+(-m))^{(1/(p+(-1)))} <==> ...
... log[x](x^{(p+(-1))}+m) = 0 <==> x = (1+(-m))^{(1/(p+(-1)))}
x^{p}+mx = 2m^{(p/(p+(-1)))} <==> ...
... log[x](x^{(p+(-1))}+m) = log[x](2m) <==> x = m^{(1/(p+(-1)))}
k·x^{p}+(mk)·x^{q} = c
x = (c/k)^{( 1/( [..(m)..[ p+(-q) ]..(m)..]+q ) )}
k·x^{p}+(mk)·x^{q} = k·(1+(-m))^{(q/(p+(-q)))} <==> ...
... log[x](x^{(p+(-q))}+m) = 0 <==> x = (1+(-m))^{(1/(p+(-q)))}
k·x^{p}+(mk)·x^{q} = (2k)·m^{(p/(p+(-q)))} <==> ...
... log[x](x^{(p+(-q))}+m) = log[x](2m) <==> x = m^{(1/(p+(-q)))}
x^{4}+4x = c
x = c^{( 1/( [..(4)..[3]..(4)..]+1 ) )}
x = c^{( 1/( log[x](x^{3}+4)+1 ) )}
x^{4}+4x = (-3)^{(1/3)} <==> log[x](x^{3}+4) = 0 <==> x = (-3)^{(1/3)}
x^{4}+4x = 2·4^{(4/3)} <==> log[x](x^{3}+4) = log[x](8) <==> x = 4^{(1/3)}
x^{4}+x = 0 <==> x = e^{(1/3)·(pi·i)}
4x^{8}+12x = c
x = (c/4)^{( 1/( [..(3)..[7]..(3)..]+1 ) )}
x = (c/4)^{( 1/( log[x](x^{7}+3)+1 ) )}
4x^{8}+12x = 4·(-2)^{(1/7)} <==> log[x](x^{7}+3) = 0 <==> x = (-2)^{(1/7)}
4x^{8}+12x = 8·3^{(8/7)} <==> log[x](x^{7}+3) = log[x](6) <==> x = 3^{(1/7)}
x^{8}+x = 0 <==> x = e^{(1/7)·(pi·i)}
8x^{8}+32x^{2} = c
x = (c/8)^{( 1/( [..(4)..[6]..(4)..]+2 ) )}
x = (c/8)^{( 1/( log[x](x^{6}+4)+2 ) )}
8x^{8}+32x^{2} = 8·(-3)^{(1/3)} <==> log[x](x^{6}+4) = 0 <==> x = (-3)^{(1/6)}
8x^{8}+32x^{2} = 16·4^{(4/3)} <==> log[x](x^{6}+4) = log[x](8) <==> x = 4^{(1/6)}
x^{8}+x^{2} = 0 <==> x = e^{(1/6)·(pi·i)}
álgebra: ecuacions polinomiques
x^{p}+x^{q} = 0 <==> x = e^{(1/(p+(-q)))·(pi·i)}
x^{[..(1)..[n]..(1)..]} = x^{n}+1
x^{p}+x^{q} = x^{[..(1)..[p+(-q)]..(1)..]+q}
x^{p}+x^{q} = c
x = c^{( 1/( [..(1)..[p+(-q)]..(1)..]+q ) )}
c^{( p/( [..(1)..[p+(-q)]..(1)..]+q ) )}+c^{( q/( [..(1)..[p+(-q)]..(1)..]+q ) )} = ...
c^{( q/( [..(1)..[p+(-q)]..(1)..]+q ) )}( c^{( (p+(-q))/( [..(1)..[p+(-q)]..(1)..]+q ) )}+1 ) = ...
c^{( q/( [..(1)..[p+(-q)]..(1)..]+q ) )}·c^{( [..(1)..[p+(-q)]..(1)..]/( [..(1)..[p+(-q)]..(1)..]+q ) )} = ...
c^{( ( [..(1)..[p+(-q)]..(1)..]+q )/( [..(1)..[p+(-q)]..(1)..]+q ) )} = c
x^{[..(1)..[0]..(1)..]} = 2
x^{[..(1)..[0]..(1)..]} = x^{0}+1 = 2
x^{[..(m)..[0]..(m)..]} = x^{0}+m = m+1
logaritme suma
ln(a+b) = ln( e^{ln(a)}+e^{ln(b)} ) = [ln(a)+(-1)·ln(b)]+ln(b)
ln(a+a) = [ln(a)+(-1)·ln(a)]+ln(a)
ln(a+a) = ln(2)+ln(a)
ln(a+b+c) = [ ln(a)+(-1)( [ln(b)+(-1)·ln(c)]+ln(c) )]+[ln(b)+(-1)·ln(c)]+ln(c)
ln(a+a+a) = [ ln(a)+(-1)( [ln(a)+(-1)·ln(a)]+ln(a) )]+[ln(a)+(-1)·ln(a)]+ln(a)
ln(a+a+a) = ln(3/2)+ln(2)+ln(a)
ln( x^{p}+y^{q} ) = z <==> ...
... z = [ ln(p!)+e[( 1/p! )]+(-1)( ln(q!)+e[( 1/q! )] ) ]+( ln(q!)+e[( 1/q! )] ) ...
... x = e[( 1/p! )] ...
... y = e[( 1/q! )]
ln( x^{p}+y^{q} ) = z^{n} <==> ...
... z = ( [ ln(p!)+e[( 1/p! )]+(-1)( ln(q!)+e[( 1/q! )] ) ]+( ln(q!)+e[( 1/q! )] ) )^{(1/n)} ...
... x = e[( 1/p! )] ...
... y = e[( 1/q! )]
ln( ax^{p}+by^{q} ) = cz^{n} <==> ...
... ax^{p}+by^{q} = e^{cz^{n}} <==> ...
... z = ( (1/c)·( [ ln(a·p!)+e[( 1/p! )]+(-1)( ln(b·q!)+e[( 1/q! )] ) ]+( ln(b·q!)+e[( 1/q! )] ) ) )^{(1/n)} ...
... x = e[( 1/p! )] ...
... y = e[( 1/q! )]
ln( ax^{p}+by^{q} ) = ln(c)+z^{n} <==> ...
... ax^{p}+by^{q} = c·e^{z^{n}} <==> ...
... z = ( (-1)·ln(c)+[ ln(a·p!)+e[( 1/p! )]+(-1)( ln(b·q!)+e[( 1/q! )] ) ]+( ln(b·q!)+e[( 1/q! )] ) )^{(1/n)} ...
... x = e[( 1/p! )] ...
... y = e[( 1/q! )]
ln( ax^{p}+by^{q} ) = ln(s)+cz^{n} <==> ...
... ax^{p}+by^{q} = s·e^{cz^{n}} <==> ...
... z = ( (1/c)·( (-1)·ln(s)+[ ln(a·p!)+e[( 1/p! )]+(-1)( ln(b·q!)+e[( 1/q! )] ) ]+( ln(b·q!)+e[( 1/q! )] ) ) )^{(1/n)}
... x = e[( 1/p! )] ...
... y = e[( 1/q! )]
ln(a+a) = [ln(a)+(-1)·ln(a)]+ln(a)
ln(a+a) = ln(2)+ln(a)
ln(a+b+c) = [ ln(a)+(-1)( [ln(b)+(-1)·ln(c)]+ln(c) )]+[ln(b)+(-1)·ln(c)]+ln(c)
ln(a+a+a) = [ ln(a)+(-1)( [ln(a)+(-1)·ln(a)]+ln(a) )]+[ln(a)+(-1)·ln(a)]+ln(a)
ln(a+a+a) = ln(3/2)+ln(2)+ln(a)
ln( x^{p}+y^{q} ) = z <==> ...
... z = [ ln(p!)+e[( 1/p! )]+(-1)( ln(q!)+e[( 1/q! )] ) ]+( ln(q!)+e[( 1/q! )] ) ...
... x = e[( 1/p! )] ...
... y = e[( 1/q! )]
ln( x^{p}+y^{q} ) = z^{n} <==> ...
... z = ( [ ln(p!)+e[( 1/p! )]+(-1)( ln(q!)+e[( 1/q! )] ) ]+( ln(q!)+e[( 1/q! )] ) )^{(1/n)} ...
... x = e[( 1/p! )] ...
... y = e[( 1/q! )]
ln( ax^{p}+by^{q} ) = cz^{n} <==> ...
... ax^{p}+by^{q} = e^{cz^{n}} <==> ...
... z = ( (1/c)·( [ ln(a·p!)+e[( 1/p! )]+(-1)( ln(b·q!)+e[( 1/q! )] ) ]+( ln(b·q!)+e[( 1/q! )] ) ) )^{(1/n)} ...
... x = e[( 1/p! )] ...
... y = e[( 1/q! )]
ln( ax^{p}+by^{q} ) = ln(c)+z^{n} <==> ...
... ax^{p}+by^{q} = c·e^{z^{n}} <==> ...
... z = ( (-1)·ln(c)+[ ln(a·p!)+e[( 1/p! )]+(-1)( ln(b·q!)+e[( 1/q! )] ) ]+( ln(b·q!)+e[( 1/q! )] ) )^{(1/n)} ...
... x = e[( 1/p! )] ...
... y = e[( 1/q! )]
ln( ax^{p}+by^{q} ) = ln(s)+cz^{n} <==> ...
... ax^{p}+by^{q} = s·e^{cz^{n}} <==> ...
... z = ( (1/c)·( (-1)·ln(s)+[ ln(a·p!)+e[( 1/p! )]+(-1)( ln(b·q!)+e[( 1/q! )] ) ]+( ln(b·q!)+e[( 1/q! )] ) ) )^{(1/n)}
... x = e[( 1/p! )] ...
... y = e[( 1/q! )]
ecuacions para-exponencial
e^{[..(m)..[x]..(m)..]} = (e^{x}+m)
[..(m)..[0]..(m)..] = ln(m+1)
e^{[..(m+1)..[0]..(m+1)..]} = e^{[..(m)..[0]..(m)..]}+1 = (m+1)+1 = m+2
e^{[..(m)..[x]..(m)..]} = (n+m) <==> x = ln(n)
e^{[..(m)..[x]..(m)..]} = n <==> x = ln(n+(-m))
e^{[..(m)..[z]..(m)..]} = (1/n!)·x^{n} <==> ...
... z = ln( e^{e[( 1/n! )]}+(-m) ) ...
... x = e[( 1/n! )]
e^{[..(m)..[z]..(m)..]} = x^{n} <==> ...
... z = ln( e^{ln(n!)+e[( 1/n! )]}+(-m) ) ...
... x = e[( 1/n! )]
e^{[..(m)..[z]..(m)..]} = (1/p!)·x^{p}+(1/q!)·y^{q} <==> ...
... z = ln( e^{[ e[( 1/p! )]+(-1)·e[( 1/q! )] ]+e[( 1/q! )]}+(-m) ) ...
... x = e[( 1/p! )] ...
... y = e[( 1/q! )]
e^{[..(m)..[z]..(m)..]} = x^{p}+y^{q} <==> ...
... z = ln( e^{[ ln(p!)+e[( 1/p! )]+(-1)·( ln(q!)+e[( 1/q! )] ) ]+ln(q!)+e[( 1/q! )]}+(-m) ) ...
... x = e[( 1/p! )] ...
... y = e[( 1/q! )]
[..(m)..[0]..(m)..] = ln(m+1)
e^{[..(m+1)..[0]..(m+1)..]} = e^{[..(m)..[0]..(m)..]}+1 = (m+1)+1 = m+2
e^{[..(m)..[x]..(m)..]} = (n+m) <==> x = ln(n)
e^{[..(m)..[x]..(m)..]} = n <==> x = ln(n+(-m))
e^{[..(m)..[z]..(m)..]} = (1/n!)·x^{n} <==> ...
... z = ln( e^{e[( 1/n! )]}+(-m) ) ...
... x = e[( 1/n! )]
e^{[..(m)..[z]..(m)..]} = x^{n} <==> ...
... z = ln( e^{ln(n!)+e[( 1/n! )]}+(-m) ) ...
... x = e[( 1/n! )]
e^{[..(m)..[z]..(m)..]} = (1/p!)·x^{p}+(1/q!)·y^{q} <==> ...
... z = ln( e^{[ e[( 1/p! )]+(-1)·e[( 1/q! )] ]+e[( 1/q! )]}+(-m) ) ...
... x = e[( 1/p! )] ...
... y = e[( 1/q! )]
e^{[..(m)..[z]..(m)..]} = x^{p}+y^{q} <==> ...
... z = ln( e^{[ ln(p!)+e[( 1/p! )]+(-1)·( ln(q!)+e[( 1/q! )] ) ]+ln(q!)+e[( 1/q! )]}+(-m) ) ...
... x = e[( 1/p! )] ...
... y = e[( 1/q! )]
ecuació exponencial III
e^{x}+e^{y}+e^{z}+e^{t} = e^{[x+(-1)( [y+(-1)( [z+(-t)]+t ) ]+[z+(-t)]+t )]+[y+(-1)( [z+(-t)]+t ) ]+[z+(-t)]+t}
[(-1)( [(-1)[0]]+[0] )] = ln(4/3)
e^{[(-1)( [(-1)[0]]+[0] )]}=(1/e^{[(-1)[0]]+[0]})+1 = (2/3)·(1/2)+1 = (1/3)+1 = (4/3)
ecuació exponencial II
e^{x}+e^{y}+e^{z} = e^{x}+e^{[y+(-z)]+z}
e^{x}+e^{y}+e^{z} = e^{[x+(-1)( [y+(-z)]+z ) ]+[y+(-z)]+z}
e^{x}+e^{y}+1 = e^{[x+(-1)[y] ]+[y]}
e^{x}+1+e^{z} = e^{[x+(-1)( [(-z)]+z ) ]+[(-z)]+z}
e^{x}+( (1/e^{z})+1 )·e^{z} = e^{[x+(-1)( [(-z)]+z ) ]+[(-z)]+z}
1+e^{y}+e^{z} = e^{[(-1)( [y+(-z)]+z ) ]+[y+(-z)]+z}
1+e^{[y+(-z)]+z} = e^{[(-1)( [y+(-z)]+z ) ]+[y+(-z)]+z}
[(-1)[0]] = ln(3/2)
e^{[(-1)[0]]}=(1/e^{[0]})+1 = (1/2)+1 = (3/2)
e^{x}+e^{y}+e^{z} = e^{[x+(-1)( [y+(-z)]+z ) ]+[y+(-z)]+z}
e^{x}+e^{y}+1 = e^{[x+(-1)[y] ]+[y]}
e^{x}+1+e^{z} = e^{[x+(-1)( [(-z)]+z ) ]+[(-z)]+z}
e^{x}+( (1/e^{z})+1 )·e^{z} = e^{[x+(-1)( [(-z)]+z ) ]+[(-z)]+z}
1+e^{y}+e^{z} = e^{[(-1)( [y+(-z)]+z ) ]+[y+(-z)]+z}
1+e^{[y+(-z)]+z} = e^{[(-1)( [y+(-z)]+z ) ]+[y+(-z)]+z}
[(-1)[0]] = ln(3/2)
e^{[(-1)[0]]}=(1/e^{[0]})+1 = (1/2)+1 = (3/2)
miércoles, 22 de enero de 2020
ecuació exponencial
e^{x}+e^{y} = ( e^{x+(-y)}+1 )·e^{y}
e^{x}+e^{y} = e^{[ x+(-y) ]}·e^{y}
e^{x}+e^{y} = e^{[ x+(-y) ]+y}
[0] = ln(2)
e^{[0]} = e^{0}+1 = 2
e^{x} = (1/n!)·x^{n} <==> x = e[( 1/n! )]
e^{z} = k·(1/n!)·x^{n} <==> ...
... z = ln(k)+e[( 1/n! )] ...
... x = e[( 1/n! )]
e^{z} = (1/n)·x^{n} <==> ...
... z = ln( (n+(-1))! )+e[( 1/n! )] ...
... x = e[( 1/n! )]
e^{z} = (n+1)·x^{n} <==> ...
... z = ln( (n+1)! )+e[( 1/n! )] ...
... x = e[( 1/n! )]
e^{z} = (1/n!)·x^{n} + a <==> ...
... z = [ e[( 1/n! )] + (-1)·ln(a) ] + ln(a) ...
... x = e[( 1/n! )]
e^{z} = (1/p!)·x^{p} + (1/q!)·y^{q} <==> ...
... z = [ e[( 1/p! )] + (-1)·e[( 1/q! )] ] + e[( 1/q! )] ...
... x = e[( 1/p! )] ...
... y = e[( 1/q! )]
e^{z} = x^{p} + y^{q} <==> ...
... z = [ ( ln(p!)+e[( 1/p! )] ) + (-1)·( ln(q!)+e[( 1/q! )] ) ] + ( ln(q!)+e[( 1/q! )] ) ...
... x = e[( 1/p! )] ...
... y = e[( 1/q! )]
e^{z} = ax^{p} + by^{q} <==> ...
... z = [ ( ln(a)+ln(p!)+e[( 1/p! )] ) + (-1)·( ln(b)+ln(q!)+e[( 1/q! )] ) ] + ( ln(b)+ln(q!)+e[( 1/q! )] ) ...
... x = e[( 1/p! )] ...
... y = e[( 1/q! )]
e^{x}+e^{y} = e^{[ x+(-y) ]}·e^{y}
e^{x}+e^{y} = e^{[ x+(-y) ]+y}
[0] = ln(2)
e^{[0]} = e^{0}+1 = 2
e^{x} = (1/n!)·x^{n} <==> x = e[( 1/n! )]
e^{z} = k·(1/n!)·x^{n} <==> ...
... z = ln(k)+e[( 1/n! )] ...
... x = e[( 1/n! )]
e^{z} = (1/n)·x^{n} <==> ...
... z = ln( (n+(-1))! )+e[( 1/n! )] ...
... x = e[( 1/n! )]
e^{z} = (n+1)·x^{n} <==> ...
... z = ln( (n+1)! )+e[( 1/n! )] ...
... x = e[( 1/n! )]
e^{z} = (1/n!)·x^{n} + a <==> ...
... z = [ e[( 1/n! )] + (-1)·ln(a) ] + ln(a) ...
... x = e[( 1/n! )]
e^{z} = (1/p!)·x^{p} + (1/q!)·y^{q} <==> ...
... z = [ e[( 1/p! )] + (-1)·e[( 1/q! )] ] + e[( 1/q! )] ...
... x = e[( 1/p! )] ...
... y = e[( 1/q! )]
e^{z} = x^{p} + y^{q} <==> ...
... z = [ ( ln(p!)+e[( 1/p! )] ) + (-1)·( ln(q!)+e[( 1/q! )] ) ] + ( ln(q!)+e[( 1/q! )] ) ...
... x = e[( 1/p! )] ...
... y = e[( 1/q! )]
e^{z} = ax^{p} + by^{q} <==> ...
... z = [ ( ln(a)+ln(p!)+e[( 1/p! )] ) + (-1)·( ln(b)+ln(q!)+e[( 1/q! )] ) ] + ( ln(b)+ln(q!)+e[( 1/q! )] ) ...
... x = e[( 1/p! )] ...
... y = e[( 1/q! )]
derivades ecuació potencial amb exponencial
Si ( ( f(x) )^{m}+e^{x} = ( f(x) )^{n} & f(x) >] 0 & d_{x}[f(x)] > 0 ) ==> m( f(x) )^{m} [< n( f(x) )^{n}
m( f(x) )^{(m+(-1))}·d_{x}[f(x)]+e^{x} = n( f(x) )^{(n+(-1))}·d_{x}[f(x)]
m( f(x) )^{(m+(-1))}·d_{x}[f(x)] [< n( f(x) )^{(n+(-1))}·d_{x}[f(x)]
m( f(x) )^{(m+(-1))} [< n( f(x) )^{(n+(-1))}
derivades ecuació potencial
Si ( ( f(x) )^{m} + x = ( f(x) )^{n} & f(x) >] 0 & d_{x}[f(x)] > 0 ) ==> m( f(x) )^{m} [< n( f(x) )^{n}
m( f(x) )^{(m+(-1))}·d_{x}[f(x)] + 1 = n( f(x) )^{(n+(-1))}·d_{x}[f(x)]
m( f(x) )^{(m+(-1))}·d_{x}[f(x)] [< n( f(x) )^{(n+(-1))}·d_{x}[f(x)]
m( f(x) )^{(m+(-1))} [< n( f(x) )^{(n+(-1))}
m( f(x) )^{(m+(-1))}·d_{x}[f(x)] + 1 = n( f(x) )^{(n+(-1))}·d_{x}[f(x)]
m( f(x) )^{(m+(-1))}·d_{x}[f(x)] [< n( f(x) )^{(n+(-1))}·d_{x}[f(x)]
m( f(x) )^{(m+(-1))} [< n( f(x) )^{(n+(-1))}
biótica: gatos
color
{
gato-negro
}
{
gato-negro-y-blanco
}
{
gato-blanco
}
color
{
gato-negro-persa
}
{
gato-gris-siamés
}
{
gato-blanco-persa
}
color
{
gato-granate-naranja
}
{
gato-naranja
}
{
gato-ocre-naranja
}
color
{
gato-rojo-marrón
}
{
gato-marrón
}
{
gato-amarillo-marrón
}
{
gato-negro
}
{
gato-negro-y-blanco
}
{
gato-blanco
}
color
{
gato-negro-persa
}
{
gato-gris-siamés
}
{
gato-blanco-persa
}
color
{
gato-granate-naranja
}
{
gato-naranja
}
{
gato-ocre-naranja
}
color
{
gato-rojo-marrón
}
{
gato-marrón
}
{
gato-amarillo-marrón
}
martes, 21 de enero de 2020
biótica: cerdo y jabalí
color
{
cerdo-negro-y-lila
}
{
cerdo-gris
}
{
cerdo-blanco-y-lila
}
color
{
jabalí-blanco-y-marrón
}
{
jabalí-gris
}
{
jabalí-negro-y-marrón
}
biótica: cabra y oveja
color
{
oveja-blanca
}
{
oveja-gris
}
{
oveja-negra
}
color
{
cabra-negra
}
{
cabra-gris
}
{
cabra-blanca
}
biótica: hipopótamo y rinoceronte
color
{
rinoceronte-blanco-con-dos-cuernos
}
{
rinoceronte-gris-con-dos-cuernos
}
{
rinoceronte-negro-con-dos-cuernos
}
color
{
hipopótamo-negro-con-dos-colmillos
}
{
hipopótamo-gris-con-dos-colmillos
}
{
hipopótamo-blanco-con-dos-colmillos
}
biótica: elefante
color
{
mamut-blanco-de-orejas-pequeñas
}
{
elefante-gris-de-orejas-grandes
}
{
mamut-negro-de-orejas-pequeñas
}
color
{
mastodonte-blanco-de-orejas-grandes
}
{
elefante-gris-de-orejas-pequeñas
}
{
mastodonte-negro-de-orejas-grandes
}
biótica: toro y buey
color
{
toro-blanco
}
{
buey-blanco-y-negro
}
{
toro-negro
}
color
{
buey-rojo-marrón
}
{
toro-marrón
}
{
buey-amarillo-marrón
}
biótica: cavallo, cebra y jirafa
color
{
caballo-blanco
}
{
cebra-blanca-y-negra
}
{
caballo-negro
}
color
{
jirafa-roja-marrón
}
{
caballo-marrón
}
{
jirafa-amarilla-marrón
}
{
caballo-blanco
}
{
cebra-blanca-y-negra
}
{
caballo-negro
}
color
{
jirafa-roja-marrón
}
{
caballo-marrón
}
{
jirafa-amarilla-marrón
}
biótica: ranas y sapos
color
{
rana-roja
}
{
rana-marrón
}
{
rana amarilla
}
color
{
sapo-verdoso
}
{
sapo-azul
}
{
sapo-lila
}
{
rana-roja
}
{
rana-marrón
}
{
rana amarilla
}
color
{
sapo-verdoso
}
{
sapo-azul
}
{
sapo-lila
}
credits de biótica
Dual-bolets: 20 credits
Dual-fruites: 20 credits
Dual-animals: 30 credits
Dual-fulles: 20 credits
Dual-flors: 20 credits
Total: 110 credits
Dual-fruites: 20 credits
Dual-animals: 30 credits
Dual-fulles: 20 credits
Dual-flors: 20 credits
Total: 110 credits
lunes, 20 de enero de 2020
química: equilibri químic de la oxidació del nitrur de hidrógen
( [ 2·NH_{3} ]·[ O_{2} ] )/( [ N_{2}O_{2} ]·[ 3·H_{2}] ) = (48/60) = (8/10) = (4/5)
5·[ 2·NH_{3} ]·[ O_{2} ] <==> 4·[ N_{2}O_{2} ]·[ 3·H_{2}]
E = 240
5·[ 2·NH_{3} ]·[ O_{2} ] <==> 4·[ N_{2}O_{2} ]·[ 3·H_{2}]
E = 240
química: equilibri químic de la combustió del metà
( [ CH_{4} ]·[ O_{2} ] )/( [ CO_{2} ]·[ 2·H_{2} ] ) = 32/32 = 1
[ CH_{4} ]·[ O_{2} ] <==> [ CO_{2} ]·[ 2·H_{2} ]
E = 32
química: equilibri químic del aigua
( [ 2·H_{2} ]·[ O_{2} ] )/[ 2·H_{2}O ] = 16/8 = 2
[ 2·H_{2} ]·[ O_{2} ] <==> 2·[ 2·H_{2}O ]
E = 16
[ 2·H_{2} ]·[ O_{2} ] <==> 2·[ 2·H_{2}O ]
E = 16
credits de economia
Computació-de-vectors-y-matrius: 20 credits
Álgebra: 20 credits
Álgebra-lineal-y-geometría-lineal: 20 credits
Análisis-matemàtic: 40 credits
Ecuacions-diferencials: 10 credits
micro-economia: 30 credits
micro-economía-de-geometría: 20 credits
simetría-de-consum: 30 credits
models-de-preus-de-ecuacions-diferencials: 30 credits
total: 220 credits
credits de química
Reaccions-y-entalpies: 60 credits
Molecules-poligonals-constructors-y-destructors: 40 credits
Molecules-poligonals-para-constructors-y-para-destructors: 40 credits
Configuracions-electróniques: 20 credits
equilibri-químic: 60 credits
total: 220 credits
Molecules-poligonals-constructors-y-destructors: 40 credits
Molecules-poligonals-para-constructors-y-para-destructors: 40 credits
Configuracions-electróniques: 20 credits
equilibri-químic: 60 credits
total: 220 credits
óptica: reflexió atravesant
x_{1} = R·cos(s_{1})
x_{2} = R·cos(s_{1})
y_{1} = R·sin(s_{1})
y_{2} = (-1)·R·sin(s_{1})
óptica: reflexió rebotant
x_{1} = R·cos(s_{1})
x_{2} = (-1)·R·cos(s_{1})
y_{1} = R·sin(s_{1})
y_{2} = R·sin(s_{1})
óptica: refracció
x_{1} = R· cos(s_{1})
x_{2} = (-1)·R·sin(s_{1}) )
y_{1} = R·sin(s_{1})
y_{2} = (-1)·R·cos(s_{1})
óptica: reflexió de mirall
x_{1} = R·cos(s_{1})
x_{2} = R·cos(s_{1})
y_{1} = R·sin(s_{1})
y_{2} = R·sin(s_{1})
x_{2} = R·cos(s_{1})
y_{1} = R·sin(s_{1})
y_{2} = R·sin(s_{1})
credits de física
Computació-de-vectors-y-matrius: 20 credits
Álgebra: 20 credits
Álgebra-lineal-y-geometría-lineal: 20 credits
Análisis-matemàtic: 40 credits
Ecuacions-diferencials: 10 credits
Mecánica-classica: 20 credits
Termodinámica: 10 credits
Electromagnetisme-y-gravitomagnetisme: 10 credits
Mecanisme-de-gauge: 10 credits
Mecanica-tensorial: 10 credits
Teoría-de-cordes: 10 credits
Mecanica-cuántica: 10 credits
Óptica: 10 credits
Circuits-eléctrics: 10 credits
Integrals-de-càrrega: 10 credits
Total: 220 credits
credits de matemàtiques
Computació-de-vectors-y-matrius: 20 credits
Álgebra: 20 credits
Álgebra-lineal-y-geometría-lineal: 20 credits
Análisis-matemàtic: 40 credits
Ecuacions-diferencials: 10 credits
Càlcul-integral: 10 credits
Topologia: 10 credits
Números-figurats y particions: 20 credits
Teoría-de-conjunts: 10 credits
Teoría-de-números: 10 credits
Probabilitats: 10 credits
Series-y-Sumes: 10 credits
Geometría-diferencial: 10 credits
Análisis-complexa: 10 credits
Análisis-funcional: 10 credits
Total: 220 credits
Álgebra: 20 credits
Álgebra-lineal-y-geometría-lineal: 20 credits
Análisis-matemàtic: 40 credits
Ecuacions-diferencials: 10 credits
Càlcul-integral: 10 credits
Topologia: 10 credits
Números-figurats y particions: 20 credits
Teoría-de-conjunts: 10 credits
Teoría-de-números: 10 credits
Probabilitats: 10 credits
Series-y-Sumes: 10 credits
Geometría-diferencial: 10 credits
Análisis-complexa: 10 credits
Análisis-funcional: 10 credits
Total: 220 credits
números hexagonals
n=2
0110
1111
0110
n=3
0011100
0111110
1111111
0111110
0011100
P(n) = ( n+2·(n+(-1)) )·( 1+2·(n+(-1)) )+(-2)·n(n+(-1))
P(n) = ( n+(n+1)·2·(n+(-1))+4·(n+(-1))^{2} )+(-2)·n(n+(-1))
P(n) = ( n+2·(n^{2}+(-1))+4·(n^{2}+(-2)n+1) )+(-2)·n(n+(-1))
P(n) = 4n^{2}+(-5)n+2
P(2) = 8
P(3) = 23
0110
1111
0110
n=3
0011100
0111110
1111111
0111110
0011100
P(n) = ( n+2·(n+(-1)) )·( 1+2·(n+(-1)) )+(-2)·n(n+(-1))
P(n) = ( n+(n+1)·2·(n+(-1))+4·(n+(-1))^{2} )+(-2)·n(n+(-1))
P(n) = ( n+2·(n^{2}+(-1))+4·(n^{2}+(-2)n+1) )+(-2)·n(n+(-1))
P(n) = 4n^{2}+(-5)n+2
P(2) = 8
P(3) = 23
números mitx-hexagonals
n=2
0110
1111
n=3
0011100
0111110
1111111
n=4
0001111000
0011111100
0111111110
1111111111
n=5
0000111110000
0001111111000
0011111111100
0111111111110
1111111111111
P(n) = ( n+2(n+(-1)) )·n+(-1)(n+(-1))·n
P(n) = n( 2n+(-1) ) = 2n^{2}+(-n)
P(0) = 0
P(1/2) = 0
P(2) = 6
P(3) = 15
P(4) = 28
P(5) = 45
0110
1111
n=3
0011100
0111110
1111111
n=4
0001111000
0011111100
0111111110
1111111111
n=5
0000111110000
0001111111000
0011111111100
0111111111110
1111111111111
P(n) = ( n+2(n+(-1)) )·n+(-1)(n+(-1))·n
P(n) = n( 2n+(-1) ) = 2n^{2}+(-n)
P(0) = 0
P(1/2) = 0
P(2) = 6
P(3) = 15
P(4) = 28
P(5) = 45
integrals exponencials
∫ [e^{( f(x) )^{n}}] d[x] = e^{( f(x) )^{n}} [o(x)o] ( ( f(x) )^{n} )^{[o(x)o](-1)}
∫ [e^{( ax )^{n}}] d[x] = ...
...e^{( ax )^{n}} [o(x)o] (1/a^{2})·(1/n)·( 1/((-n)+2) )·( ( ax )^{(-n)+2} )
∫ [e^{( ax^{2}+bx )^{n}}] d[x] = ...
...e^{( ax^{2}+bx )^{n}} [o(x)o]...
...(1/n)·( 1/((-n)+2) )·( ( ax^{2}+bx )^{(-n)+2} ) [o(x)o] (1/2a)·(-1)·( 2ax+b )^{(-1)}
∫ [e^{( ax^{3}+bx^{2}+cx )^{n}}] d[x] = ...
...e^{( ax^{3}+bx^{2}+cx )^{n}} [o(x)o]...
...(1/n)·( 1/((-n)+2) )·( ( ax^{3}+bx^{2}+cx )^{(-n)+2} ) [o(x)o] ...
...(-1)·( 3ax^{2}+2bx+c )^{(-1)} [o(x)o] (1/6a)·ln(6ax+b)
∫ [e^{( ax^{4}+bx^{3}+cx^{2}+dx )^{n}}] d[x] = ...
...e^{( ax^{4}+bx^{3}+cx^{2}+dx )^{n}} [o(x)o]...
...(1/n)·( 1/((-n)+2) )·( ( ax^{4}+bx^{3}+cx^{2}+dx )^{(-n)+2} ) [o(x)o] ...
...(-1)·( 4ax^{3}+3bx^{2}+2cx+d )^{(-1)} [o(x)o] ln(12ax^{2}+6bx+2c) [o(x)o] (1/24a)·ln(24ax+6b)
integrals potencials
∫ [( f(x) )^{n}] d[x] = (1/(n+1))( f(x) )^{(n+1)} [o(x)o] ( f(x) )^{[o(x)o](-1)}
∫ [ ( ax^{2}+bx )^{n} ] d[x] = (1/(n+1))( ax^{2}+bx )^{(n+1)} [o(x)o] (1/2a)·ln(2ax+b)
∫ [ ( ax^{3}+bx^{2}+cx )^{n} ] d[x] = ...
...(1/(n+1))( ax^{3}+bx^{2}+cx )^{(n+1)} [o(x)o] ( ln(3ax^{2}+2bx+c) [o(x)o] (1/6a)·ln(6ax+2b) )
∫ [ ( ax^{4}+bx^{3}+cx^{2}+dx )^{n} ] d[x] = ...
...(1/(n+1))( ax^{4}+bx^{3}+cx^{2}+dx )^{(n+1)} [o(x)o] ...
...( ln(4ax^{3}+3bx^{2}+2cx+d) [o(x)o] ln(12ax^{2}+6bx+2c) [o(x)o] (1/24a)·ln(24ax+6b) )
integral de serie geométrica
∫ [ e^{x}·( (x^{(n+1)}+(-1))/(x+(-1)) ) ] d[x] = e^{x}+∑ ( x^{(k+1)}·er_{m;k+1}(x) )
∫ [ e^{x}·( (x^{(n+1)}+(-1))/(x+(-1)) ) ] d[x]= ∫ [ e^{x}+∑ ( e^{x}·x^{k} ) ] d[x]
∫ [ e^{(-x)}·( (x^{(n+1)}+(-1))/(x+(-1)) ) ] d[x] = (-1)·( e^{(-x)}+∑ ( (-x)^{(k+1)}·er_{m;k+1}(-x) ) )
∫ [ e^{x}·( (x^{(n+1)}+(-1))/(x+(-1)) ) ] d[x]= ∫ [ e^{x}+∑ ( e^{x}·x^{k} ) ] d[x]
∫ [ e^{(-x)}·( (x^{(n+1)}+(-1))/(x+(-1)) ) ] d[x] = (-1)·( e^{(-x)}+∑ ( (-x)^{(k+1)}·er_{m;k+1}(-x) ) )
índex de física
índex de etiquetes de física
domingo, 19 de enero de 2020
álgebra: índex-algebràic de un grup normal
A={1,3,5}
B={2,4,6}
C={3,5,7}
A+{1}={0}+B
A+{0}={(-1)}+B
A+{2}={0}+C
A+{0}={(-2)}+C
B+{1}={0}+C
B+{0}={(-1)}+C
E={1,3,5}
F={5,15,25}
G={2,6,10}
E·{5}={1}·F
E·{1}={(1/5)}·F
E·{2}={1}·G
E·{1}={(1/2)}·G
F·{(2/5)}={1}·G
F·{1}={(5/2)}·G
B={2,4,6}
C={3,5,7}
A+{1}={0}+B
A+{0}={(-1)}+B
A+{2}={0}+C
A+{0}={(-2)}+C
B+{1}={0}+C
B+{0}={(-1)}+C
E={1,3,5}
F={5,15,25}
G={2,6,10}
E·{5}={1}·F
E·{1}={(1/5)}·F
E·{2}={1}·G
E·{1}={(1/2)}·G
F·{(2/5)}={1}·G
F·{1}={(5/2)}·G
álgebra: sistema cuadrat
x^{2}+y^{2} = p
x+y = q
(x+y)^{2}+(-2)xy = p
q^{2}+(-p) = 2xy
x^{2}+(q+(-x))^{2} = p
(q+(-y))^{2}+y^{2} = p
2x^{2}+(-2)qx+q^{2} = p
2y^{2}+(-2)qy+q^{2} = p
x^{2}+(-q)x+( (q^{2}+(-p))/2 ) = 0
y^{2}+(-q)y+( (q^{2}+(-p))/2 ) = 0
x = (1/2)( q+( 2p+(-1)q^{2} )^{(1/2)} )
y = (1/2)( q+(-1)( 2p+(-1)q^{2} )^{(1/2)} )
x+y = q
(x+y)^{2}+(-2)xy = p
q^{2}+(-p) = 2xy
x^{2}+(q+(-x))^{2} = p
(q+(-y))^{2}+y^{2} = p
2x^{2}+(-2)qx+q^{2} = p
2y^{2}+(-2)qy+q^{2} = p
x^{2}+(-q)x+( (q^{2}+(-p))/2 ) = 0
y^{2}+(-q)y+( (q^{2}+(-p))/2 ) = 0
x = (1/2)( q+( 2p+(-1)q^{2} )^{(1/2)} )
y = (1/2)( q+(-1)( 2p+(-1)q^{2} )^{(1/2)} )
álgebra: exponent directe cuadrat
a^{2}+b^{2} = (1/2)( (a+b)^{2}+(a+(-b))^{2} )
1+4 = 5 = (1/2)( ( 1+2 )^{2}+( 2+(-1) )^{2} )
4+4 = 8 = (1/2)( ( 2+2 )^{2}+( 2+(-2) )^{2} )
1+9 = 10 = (1/2)( ( 1+3 )^{2}+( 3+(-1) )^{2} )
4+9 = 13 = (1/2)( ( 2+3 )^{2}+( 3+(-2) )^{2} )
9+9 = 18 = (1/2)( ( 3+3 )^{2}+( 3+(-3) )^{2} )
1+16 = 17 = (1/2)( ( 1+4 )^{2}+( 4+(-1) )^{2} )
4+16 = 20 = (1/2)( ( 2+4 )^{2}+( 4+(-2) )^{2} )
9+16 = 25 = (1/2)( ( 3+4 )^{2}+( 4+(-3) )^{2} )
16+16 = 32 = (1/2)( ( 4+4 )^{2}+( 4+(-4) )^{2} )
1+4 = 5 = (1/2)( ( 1+2 )^{2}+( 2+(-1) )^{2} )
4+4 = 8 = (1/2)( ( 2+2 )^{2}+( 2+(-2) )^{2} )
1+9 = 10 = (1/2)( ( 1+3 )^{2}+( 3+(-1) )^{2} )
4+9 = 13 = (1/2)( ( 2+3 )^{2}+( 3+(-2) )^{2} )
9+9 = 18 = (1/2)( ( 3+3 )^{2}+( 3+(-3) )^{2} )
1+16 = 17 = (1/2)( ( 1+4 )^{2}+( 4+(-1) )^{2} )
4+16 = 20 = (1/2)( ( 2+4 )^{2}+( 4+(-2) )^{2} )
9+16 = 25 = (1/2)( ( 3+4 )^{2}+( 4+(-3) )^{2} )
16+16 = 32 = (1/2)( ( 4+4 )^{2}+( 4+(-4) )^{2} )
índex de matemàtiques
index de etiquetes matemàtiques
Etiquetas:
matemàtiques-álgebra,
matemàtiques-álgebra-lineal,
matemàtiques-anàlisis-matemàtic,
matemàtiques-borroses,
matemàtiques-càlcul-integral,
matemàtiques-ecuacions-diferencials,
matemátiques-especies-combinatóries,
matemàtiques-números-figurats-y-particions,
matemàtiques-probabilitats,
matemàtiques-series-y-sumes,
matemàtiques-successions-y-series,
matemàtiques-teoría-de-conjunts,
matemàtiques-teoría-de-números,
matemàtiques-topologia
índex de etiquetes
index de etiquetes.
Etiquetas:
biótica,
dual-sport,
economia,
evangelio-stronikiano,
lley,
lógica-binària,
medicina-teorôctetxtekiana,
morfosintaxis-lógica,
música,
química,
teoría-de-jocs,
titulacions-y-testimoni-de-universitat
Suscribirse a:
Entradas (Atom)