d_{t}[x] = v·( ( (ax)·(vat)^{n+(-1)} )/( (vat)^{n}+(ax)^{n} ) )
x(t) = (1/a)·Anti-pow[n]-ln( (1/n)·(vat)^{n} )
Deducción:
d_{x}[ pow[n]-ln(x) ] = d_{x}[ x^{n}·ln(x) ] = nx^{n+(-1)}·ln(x)+x^{n+(-1)} = ...
... (1/x)·( nx^{n}·ln(x)+x^{n} ) = (1/x)·( n·pow[n]-ln(x)+x^{n} )
Ley:
d_{t}[x] = v·( (ax)/(n+ax) )·( m/(vat) )
x(t) = (1/a)·Anti-pow[n]-e( (1/m)·(vat)^{m} )
Deducción:
d_{x}[ pow[n]-e(x) ] = d_{x}[ x^{n}·e^{x} ] = nx^{n+(-1)}·e^{x}+x^{n}·e^{x} = ...
... (1/x)·( nx^{n}·e^{x}+x^{n+1}·e^{x} ) = (1/x)·(n+x)·pow[n]-e(x)
Ley:
d_{t}[x] = v·( (ax)/((n+1)+ax) )·( m/(vat) )
x(t) = (1/a)·Anti-pow[n]-ep-[0]( (1/m)·(vat)^{m} )
Deducción:
d_{x}[ pow[n]-ep-[0](x) ] = d_{x}[ x^{n}·ep-[0](x) ] = nx^{n+(-1)}·ep-[0](x)+x^{n}·ep-[(-1)](x) = ...
... nx^{n}·e^{x}+x^{n}·( e^{x}+xe^{x} ) = (1/x)·( (n+1)+x )·pow[n]-ep-[0](x)
Teorema:
pow[n]-ep-[0](x) = pow[n+1]-e(x)
Demostración:
pow[n]-ep-[0](x) = ...
... x^{n}·ep-[0](x) = x^{n}·( xe^{x} ) = ( x^{n}·x )·e^{x} = x^{n+1}·e^{x} = pow[n+1]-e(x)
Principio:
d_{t}[x] = v·f(ax)
x(t) = (1/a)·Anti-[ int[ ( 1/f(s) ) ]d[s] ]-(vat)
d_{t}[ Anti-[ int[ ( 1/f(s) ) ]d[s] ]-(vat) ] = va·f( Anti-[ int[ ( 1/f(s) ) ]d[s] ]-(vat) )
Ley:
d_{t}[x] = v·ln(ax)
x(t) = (1/a)·Anti-[ ln( ln(s) ) [o(s)o] (1/2)·s^{2} ]-(vat)
Ley:
d_{t}[x] = v·( 1/ln(ax) )
x(t) = (1/a)·Anti-[ ln(s)·s+(-s) ]-(vat)
Ley: [ de la hormigonera-A ]
m·d_{t}[w]·r = ( d_{t}[q]·(1/2)·t^{2}+pt )·g·sin(w)
w(t) = ...
... Anti-[ (-1)·cos(s)+ln(sin(s)) [o(s)o] sin(s) ]-( ( 1/(mr) )·( d_{t}[q]·(1/6)·t^{3}+p·(1/2)·t^{2} )·g )
Ley: [ de la hormigonera-B ]
m·d_{t}[w]·r = ( d_{t}[q]·(1/2)·t^{2}+pt )·g·cos(w)
w(t) = ...
... Anti-[ sin(s)+ln(cos(s)) [o(s)o] cos(s) ]-( ( 1/(mr) )·( d_{t}[q]·(1/6)·t^{3}+p·(1/2)·t^{2} )·g )
Ley:
d_{t}[x] = v·( e^{iax}+ad )^{n}
x(t) = (1/a)·Anti-[ ( 1/((-n)+1) )·( e^{is}+ad )^{(-n)+1} [o(s)o] e^{(-1)·is} ]-(vat)
Ley:
d_{t}[x] = v·( e^{ax}+ad )^{n}
x(t) = (1/a)·Anti-[ ( 1/((-n)+1) )·( e^{s}+ad )^{(-n)+1} [o(s)o] (-1)·e^{(-s)} ]-(vat)
Ley:
d_{t}[x] = v·( ( (ax)^{p}+ad )/( (ax)^{q}+ad ) )
x(t) = (1/a)·Anti-[ ( ( 1/(q+1) )·s^{q+1}+ads ) [o(s)o] ( s /o(s)o/( ( 1/(p+1) )·s^{p+1}+ads ) ]-(vat)
Fenómenos meteorológicos:
Ley: [ del rayo ]
U(x) = qgh·( 1+(-1)·(ax) )
int[ U(1/a) ]d[x] = (1/2)·qgh·(1/a)
x(t) = (-1)·(q/m)·gha·(1/2)·t^{2}+(1/a)
V[p] = (1/2)·gh
Ley: [ del relámpago ]
U(x) = qgh·( 1+(ax) )
int[ U(1/a) ]d[x] = (3/2)·qgh·(1/a)
x(t) = (q/m)·gha·(1/2)·t^{2}+(-1)·(1/a)
V[p] = (-1)·(3/2)·gh
Ley: [ del tornado ]
U(x) = qgh·( 1+(-1)·(ax)^{2} )
int[ U(1/a) ]d[x] = (2/3)·qgh·(1/a)
x(t) = (1/a)·sin( ( 2·(q/m)·gh )^{(1/2)}·at+(pi/2) )
V[p] = (2/3)·gh
Ley: [ del relámpago fantasmal ]
U(x) = qgh·( 1+(ax)^{2} )
int[ U(1/a) ]d[x] = (4/3)·qgh·(1/a)
x(t) = (1/a)·sinh( ( 2·(q/m)·gh )^{(1/2)}·at+(pi/2)·i )
V[p] = (-i)·(4/3)·gh
Anexo:
El voltaje imaginario hace un plasma eléctrico como el alma.
Ley: [ del anti-ciclón-frentes-de-fuego ]
U(x) = qg·(ih)·(ax)^{2}
int[ U(1/a) ]d[x] = (1/3)·qg·(ih)·(1/a)
x(t) = (1/a)·e^{( 2·(q/m)·gh )^{(1/2)}·a·kt}
V[p] = (1/3)·g·(ih)
Ley: [ del ciclón-frentes-de-agua ]
U(x) = (-1)·qg·(ih)·(ax)^{2}
int[ U(1/a) ]d[x] = (-1)·(1/3)·qg·(ih)·(1/a)
x(t) = (1/a)·e^{( 2·(q/m)·gh )^{(1/2)}·a·jt )
V[p] = (-1)·(1/3)·g·(ih)
Anexo:
Un frente anti-ciclónico normalmente,
quema un valle o una montaña.
Un frente ciclónico normalmente,
moja un valle o una montaña.
Ley: [ de niebla en los valles ]
U(x) = qg·(ih)·(ax)
int[ U(1/a) ]d[x] = (1/2)·qg·(ih)·(1/a)
x(t) = ( (q/m)·g·(ih) )·a·(1/2)·t^{2}
V[p] = (1/2)·g·(ih)
Ley: [ de niebla en las montañas ]
U(x) = (-1)·qg·(ih)·(ax)
int[ U(1/a) ]d[x] = (-1)·(1/2)·qg·(ih)·(1/a)
x(t) = (-1)·( (q/m)·g·(ih) )·a·(1/2)·t^{2}
V[p] = (-1)·(1/2)·g·(ih)
Ley:
Altas presiones positivas:
Bajas presiones negativas:
Ley:
(-1)·P_{0} [< P [< 0 [< P [< P_{0}
F( P,h_{P} ) = ( ( P_{0} )^{2}+(-1)·P^{2} )^{(1/2)}·( h_{P} )^{2}
F( 0,h_{0} ) = P_{0}·( h_{0} )^{2}
Ley:
d_{P}[ F( P,h_{P} ) ] = (-1)·( ( P_{0} )^{2}+(-1)·P^{2} )^{(-1)·(1/2)}·P·( h_{P} )^{2}
d_{h_{P}}[ F( P,h_{P} ) ] = ( ( P_{0} )^{2}+(-1)·P^{2} )^{(1/2)}·2h_{P}
Ley:
h_{P} = ( F( 0,h_{0} )·( ( P_{0} )^{2}+(-1)·P^{2} )^{(-1)·(1/2)} )^{(1/2)}
Anexo:
Si aumenta la presión positiva,
la energía potencial positiva se hace más grande a fuerza constante.
Si aumenta la presión negativa,
la energía potencial negativa se hace más grande a fuerza constante.
Ley:
Perturbación anti-ciclónica de categoría n:
P = ( n/(n+1) )^{(1/2)}·P_{0}
h_{P} = (n+1)·h_{0}
Perturbación ciclónica de categoría n:
P = (-1)·( n/(n+1) )^{(1/2)}·P_{0}
h_{P} = (-1)·(n+1)·h_{0}
Ley:
Embozamiento de aire caliente:
Embozamiento de aire frío:
Ley:
(-1)·T_{0} [< T [< 0 [< T [< T_{0}
F( T,h_{T} ) = ( ( P_{0} )^{2}+(-1)·( (kT)/V_{0} )^{2} )^{(1/2)}·( h_{T} )^{2}
F( 0,h_{0} ) = P_{0}·( h_{0} )^{2}
Sea E_{0} = P_{0}·V_{0} = k·T_{0} ==>
F( 0,h_{0} ) = k·T_{0}·( 1/V_{0} )·( h_{0} )^{2}
k = ( E_{0}/T_{0} )
Ley:
d_{T}[ F( T,h_{T} ) ] = ...
... (-1)·( ( P_{0} )^{2}+(-1)·( (kT)/V_{0} )·^{2} )^{(-1)·(1/2)}·( k/V_{0} )^{2}·T·( h_{T} )^{2}
d_{h_{T}}[ F( T,h_{T} ) ] = ( ( P_{0} )^{2}+(-1)·( (kT)/V_{0} )^{2} )^{(1/2)}·2h_{T}
Ley:
h_{T} = ( F( 0,h_{0} )·( ( P_{0} )^{2}+(-1)·( (kT)/V_{0} )^{2} )^{(-1)·(1/2)} )^{(1/2)}
Ley:
Perturbación anti-ciclónica de categoría n:
T = ( n/(n+1) )^{(1/2)}·T_{0}
h_{P} = (n+1)·h_{0}
Perturbación ciclónica de categoría n:
T = (-1)·( n/(n+1) )^{(1/2)}·T_{0}
h_{P} = (-1)·(n+1)·h_{0}
Estem atens a una baixa presió negativa ciclónica,
que ens envia fronts de pluja,
y no estarem dominats per les altes presions positives anti-ciclóniques.
Estem atens a una alta presió positiva anti-ciclónica,
que no ens envia fronts de pluja,
y no estarem dominats per les baixes presions negatives ciclóniques.
Clásico:
ix = sh
tx = tch
piixar [o] pijar
cagar [o] cagar
baixar [o] bajar
deixar [o] dejar
això [o] esto
allò [o] eso o aquello
així [o] así
Valencià:
iixte [o] iixe
iixta [o] iixa
iixtos [o] iixos
iixtes [o] iixes
parleixkû iixte valencià.
parletxkû itxte aragonès.
veitx [o] veo
deitx o daitx [o] deo o doy
vaitx [o] voy
deitx o daitx [o] deo o doy
fec o faitx [o] hago
dic [o] digo
Ley: [ de subducción ]
d_{x}[u(x,t)] = ( m/(qgh) )^{(1/2)}·d_{t}[u(x,t)]
u(x,0) = f(x)
u(x,t) = f(x+( (qgh)/m )^{(1/2)}·t)
Ley: [ de dorsal ]
d_{x}[u(x,t)] = (-1)·( m/(qgh) )^{(1/2)}·d_{t}[u(x,t)]
u(x,0) = f(x)
u(x,t) = f(x+(-1)·( (qgh)/m )^{(1/2)}·t)
Ley:
d_{x}[u(x,t)]+(-1)·( m/(qgh) )^{(1/2)}·d_{t}[u(x,t)] = (n/x)·u(x,t)
( 1/(ax) )^{n}·u(x,0) = f(x)
u(x,t) = (ax)^{n}·f(x+( (qgh)/m )^{(1/2)}·t)
Ley:
d_{x}[u(x,t)]+( m/(qgh) )^{(1/2)}·d_{t}[u(x,t)] = (n/x)·u(x,t)
( 1/(ax) )^{n}·u(x,0) = f(x)
u(x,t) = (ax)^{n}·f(x+(-1)·( (qgh)/m )^{(1/2)}·t)
Ley:
d_{x}[u(x,t)]+(-1)·( m/(qgh) )^{(1/2)}·d_{t}[u(x,t)] = na·u(x,t)
( 1/e^{nax} )·u(x,0) = f(x)
u(x,t) = e^{nax}·f(x+( (qgh)/m )^{(1/2)}·t)
Ley:
d_{x}[u(x,t)]+( m/(qgh) )^{(1/2)}·d_{t}[u(x,t)] = na·u(x,t)
( 1/e^{nax} )·u(x,0) = f(x)
u(x,t) = e^{nax}·f(x+(-1)·( (qgh)/m )^{(1/2)}·t)
Ecuación de estado del magma:
Ley:
(-p) [< q [< 0 [< q [< p
F( q,h_{q} ) = ( ( P_{0} )^{2}+(-1)·( (q·V[p])/V_{0} )^{2} )^{(1/2)}·( h_{0} )^{2}
V[p] = ( E_{0}/p )
Definición:
x = e-[2^{(1/2)}]-[mk+r](at)
(y_{1}·...·y_{n}) = e-[2^{(1/2)}]-[mk+r](at)
Axioma:
d_{t}^{2k+1}[x] = d_{t}^{2k}[ (y_{1}·...·y_{n}) ]·2^{(1/2)}·a
d_{t}^{2k+1}[ (y_{1}·...·y_{n}) ] = d_{t}^{2k}[x]·2^{(1/2)}·a
Axioma:
d_{tt}^{2k+2}[x] = d_{t}^{2k+1}[x]·2^{(-1)·(1/2)}·a
d_{tt}^{2k+2}[ (y_{1}·...·y_{n}) ] = d_{t}^{2k+1}[ (y_{1}·...·y_{n}) ]·2^{(-1)·(1/2)}·a
Ley:
F(x,y) = (-k)·< y,x > ==> U(x,y) = (-k)·2xy
(m/2)·( d_{t}[x]^{2}+d_{t}[y]^{2} ) = (-k)·( xy+yx )
x(t) = (1/a)·e-[2^{(1/2)}]-[2k+2+sig(x)·1]( (k/m)^{(1/2)}·it )
y(t) = (1/a)·e-[2^{(1/2)}]-[2k+1+sig(y)·2]( (k/m)^{(1/2)}·it )
Ley:
F(x,y,z) = (-k)·< ayz,axz,ayx > ==> U(x,y,z) = (-k)·3a·xyz
(m/2)·( d_{t}[x]^{2}+d_{t}[y]^{2}+d_{t}[z]^{2} ) = (-k)·( a·xyz+a·yxz+a·zyx )
x(t) = (1/a)·e-[2^{(1/2)}]-[3k+3]( (k/m)^{(1/2)}·it )
y(t) = (1/a)·e-[2^{(1/2)}]-[3k+2+sig(yx)·(-2)]( (k/m)^{(1/2)}·it )
z(t) = (1/a)·e-[2^{(1/2)}]-[3k+1+sig(xz)·(-1)]( (k/m)^{(1/2)}·it )
Definición:
x = e-[3^{(1/2)}]-[mk+r](at)
(y_{1}·...·y_{n}) = e-[3^{(1/2)}]-[mk+r](at)
Axioma:
d_{t}^{2k+1}[x] = d_{t}^{2k}[ (y_{1}·...·y_{n}) ]·3^{(1/2)}·a
d_{t}^{2k+1}[ (y_{1}·...·y_{n}) ] = d_{t}^{2k}[x]·3^{(1/2)}·a
Axioma:
d_{tt}^{2k+2}[x] = d_{t}^{2k+1}[x]·2·3^{(-1)·(1/2)}·a
d_{tt}^{2k+2}[ (y_{1}·...·y_{n}) ] = d_{t}^{2k+1}[ (y_{1}·...·y_{n}) ]·2·3^{(-1)·(1/2)}·a
Ley:
F(x,y) = (-k)·< y+x,x+y > ==> U(x,y) = (-k)·( 2xy+(1/2)·( x^{2}+y^{2} ) )
(m/2)·( d_{t}[x]^{2}+d_{t}[y]^{2} ) = (-k)·( xy+yx+(1/2)·( x^{2}+y^{2} ) )
x(t) = (1/a)·e-[3^{(1/2)}]-[2k+2+sig(x)·1]( (k/m)^{(1/2)}·it )
y(t) = (1/a)·e-[3^{(1/2)}]-[2k+1+sig(y)·2]( (k/m)^{(1/2)}·it )
Ley:
F(x,y,z) = (-k)·< ayz+x,axz+y,ayx+z > ==> U(x,y,z) = (-k)·( 3a·xyz+(1/2)·( x^{2}+y^{2}+z^{2} ) )
(m/2)·( d_{t}[x]^{2}+d_{t}[y]^{2}+d_{t}[z]^{2} ) = ...
... (-k)·( ( a·xyz+a·yxz+a·zyx )+(1/2)·( x^{2}+y^{2}+z^{2} ) )
x(t) = (1/a)·e-[3^{(1/2)}]-[3k+3]( (k/m)^{(1/2)}·it )
y(t) = (1/a)·e-[3^{(1/2)}]-[3k+2+sig(yx)·(-2)]( (k/m)^{(1/2)}·it )
z(t) = (1/a)·e-[3^{(1/2)}]-[3k+1+sig(xz)·(-1)]( (k/m)^{(1/2)}·it )
Definición: [ de energía potencial ]
U(x) = int[ F(x) ]d[x]
Ley: [ Operador Lagraniano de energía cinética ]
(m/2)·d_{t}[x]^{2} = int[ m·d_{tt}^{2}[x] ]d[x]
Deducción:
int[ m·d_{t}[x]·d_{tt}^{2}[x] ]d[t] = int[ m·d_{tt}^{2}[x]·d_{t}[x] ]d[t]
Energías potenciales:
Ley:
Si F(x) = F ==> U(x) = Fx
d_{t}[x(t)] = (F/m)·t
x(t) = (F/m)·(1/2)·t^{2}
Deducción:
(m/2)·d_{t}[x]^{2} = F·(F/m)·(1/2)·t^{2}
Ley:
Si F(x) = (-k)·x ==> U(x) = (-k)·(1/2)·x^{2}
x(t) = re^{(k/m)^{(1/2)}·it}
d_{t}[x(t)] = (k/m)^{(1/2)}·(ir)·e^{(k/m)^{(1/2)}·it}
Deducción:
(m/2)·d_{t}[x]^{2} = (-k)·(1/2)·r^{2}·e^{(k/m)^{(1/2)}·2it}
Ley:
Si F(x) = F+(-k)·x ==> U(x) = Fx+(-k)·(1/2)·x^{2}+(-1)·(1/2)·F·(F/k)
x(t) = re^{(k/m)^{(1/2)}·it}+(F/k)
Definición: [ de potencia energética ]
N( d_{t}[x] ) = int[ F( d_{t}[x] ) ]d[ d_{t}[x] ]
Ley: [ Operador Garriguense de potencia cinética ]
m·d_{t}[x]^{[o(t)o] 2} = int[ m·d_{tt}^{2}[x] ]d[ d_{t}[x] ]
Deducción:
int[ m·d_{tt}^{2}[x]^{2} ]d[t] = int[ m·d_{tt}^{2}[x]·d_{t}[ d_{t}[x] ]d[t]
Potencias energéticas:
Ley:
Si F( d_{t}[x] ) = F ==> N( d_{t}[x] ) = F·d_{t}[x]
d_{t}[x(t)] = (F/m)·t
x(t) = (F/m)·(1/2)·t^{2}
Deducción:
m·d_{t}[x]^{[o(t)o] 2} = F·(F/m)·t
Ley:
Si F( d_{t}[x] ) = (-b)·d_{t}[x] ==> N( d_{t}[x] ) = (-b)·(1/2)·d_{t}[x]^{2}
d_{t}[x(t)] = (-1)·(b/m)·re^{(-1)·(b/m)·t}
x(t) = re^{(-1)·(b/m)·t}
Deducción:
m·d_{t}[x]^{[o(t)o] 2} = (-b)·(b/m)^{2}·r^{2}·(1/2)·e^{(-2)·(b/m)·t}
Ley:
Si F( d_{t}[x] ) = F+(-b)·d_{t}[x] ==> ...
... N( d_{t}[x] ) = F·d_{t}[x]+(-b)·(1/2)·d_{t}[x]^{2}+(-1)·(1/2)·F·(F/b)
d_{t}[x(t)] = (-1)·(b/m)·re^{(-1)·(b/m)·t}+(F/b)
Ley:
Si F(x) = (-F)·(1/r)^{n}·(n+1)·x^{n} ==> U(x) = (-F)·(1/r)^{n}·x^{n+1}
x(t) = ( (1/2)^{(1/2)}·(n+(-1))·( (1/m)·F·(1/r)^{n} )^{(1/2)}·it )^{( (-2)/(n+(-1)) )}
Deducción:
(m/2)·d_{t}[x]^{2} = ...
... (-F)·(1/r)^{n}·( (1/2)^{(1/2)}·(n+(-1))·( (1/m)·F·(1/r)^{n} )^{(1/2)}·it )^{( (-2)·(n+1)/(n+(-1)) )}
Ley:
Si F( d_{t}[x] ) = (-F)·(1/v)^{n}·(n+1)·d_{t}[x]^{n} ==> ...
... N( d_{t}[x] ) = (-F)·(1/v)^{n}·d_{t}[x]^{n+1}
d_{t}[x(t)] = ( (n+(-1))·(n+1)·( (1/m)·F·(1/v)^{n} )·t )^{( (-1)/(n+(-1)) )}
Deducción:
m·d_{t}[x]^{[o(t)o] 2} = ...
... (-F)·(1/v)^{n}·( (n+(-1))·(n+1)·( (1/m)·F·(1/v)^{n} )·t )^{( ( (-1)·(n+1) )/(n+(-1)) )}
Definición:
x-[n]-(t) = e-[n]-[mk+r](t)
d_{t}[ ( x-[n]-(t) )^{k} ] = k·( x-[n]-(t) )^{k}
int[ (n+(-1))·( x-[n]-(t) )^{k} ]d[t] = n·(1/k)·( x-[n]-(t) )^{k}
Ley:
F(x,y,z) = (-1)·(pq)·k·(1/r)^{2}·(1/v)^{2}·...
... < d_{t}[y]d_{t}[z],d_{t}[x]d_{t}[z],d_{t}[y]d_{t}[x] > ==> ...
... N(x,y,z) = (-1)·(pq)·k·(1/r)^{2}·(1/v)^{2}·3·d_{t}[x]d_{t}[y]d_{t}[z]
m·( d_{t}[x]^{[o(t)o] 2}+d_{t}[y]^{[o(t)o] 2}+d_{t}[z]^{[o(t)o] 2} ) = ...
... (-1)·(pq)·k·(1/r)^{2}·(1/v)^{2}·3·d_{t}[x]d_{t}[y]d_{t}[z]
x(t) = int[ ve-[2]-[3k+3]( (-1)·(1/m)·(pq)·k·(1/r)^{2}·(1/v)·t ) ]d[t]
y(t) = int[ ve-[2]-[3k+2+sig(yx)·(-2)]( (-1)·(1/m)·(pq)·k·(1/r)^{2}·(1/v)·t ) ]d[t]
z(t) = int[ ve-[2]-[3k+1+sig(xz)·(-1)]( (-1)·(1/m)·(pq)·k·(1/r)^{2}·(1/v)·t ) ]d[t]
Deducción:
m·( d_{t}[x] )^{[o(t)o] 2} = int[ m·d_{tt}^{2}[x]^{2} ]d[t] = ...
... (-1)·(pq)·k·(1/r)^{2}·v·(2/2)·( e-[2]-[3k+r]( (-1)·(1/m)·(pq)·k·(1/r)^{2}·(1/v)·t ) )^{2}
Definición:
x-[p,q]-(t) = e-[p,q]-[mk+r](t)
d_{t}[ p·( x-[p,q]-(t) )^{k} ] = ( p+1 )·k·( x-[p,q]-(t) )^{k}
int[ q·( x-[p,q]-(t) )^{k} ]d[t] = ( q+(-1) )·(1/k)·( x-[p,q]-(t) )^{k}
Teorema:
int[ ( p+1 )·x(t) ]d[t] = ( (p+1)+(-1) )·x(t) = p·x(t)
d_{t}[ ( q+(-1) )·x(t) ] = ( ( q+(-1) )+1 )·x(t) = q·x(t)
Ley:
F(x,y,z) = (-1)·(pq)·k·(1/r)^{2}·(1/v)^{2}·...
... < d_{t}[y]d_{t}[z]+v·d_{t}[x],d_{t}[x]d_{t}[z]+v·d_{t}[y],d_{t}[y]d_{t}[x]+v·d_{t}[z] > ==> ...
... N(x,y,z) = (-1)·(pq)·k·(1/r)^{2}·(1/v)^{2}·...
... ( 3·d_{t}[x]d_{t}[y]d_{t}[z]+(v/2)·( d_{t}[x]^{2}+d_{t}[y]^{2}+d_{t}[z]^{2} ) )
m·( d_{t}[x]^{[o(t)o] 2}+d_{t}[y]^{[o(t)o] 2}+d_{t}[z]^{[o(t)o] 2} ) = ...
... (-1)·(pq)·k·(1/r)^{2}·(1/v)^{2}·...
... ( 3·d_{t}[x]d_{t}[y]d_{t}[z]+(v/2)·( d_{t}[x]^{2}+d_{t}[y]^{2}+d_{t}[z]^{2} ) )
x(t) = int[ ve-[p,q]-[3k+3]( (-1)·(1/m)·(pq)·k·(1/r)^{2}·(1/v)·t ) ]d[t]
y(t) = int[ ve-[p,q]-[3k+2+sig(yx)·(-2)]( (-1)·(1/m)·(pq)·k·(1/r)^{2}·(1/v)·t ) ]d[t]
z(t) = int[ ve-[p,q]-[3k+1+sig(xz)·(-1)]( (-1)·(1/m)·(pq)·k·(1/r)^{2}·(1/v)·t ) ]d[t]
Deducción:
m·d_{t}[x]^{[o(t)o] 2} = int[ m·d_{tt}^{2}[x]^{2} ]d[t] = ...
... (-1)·(pq)·k·(1/r)^{2}·v·...
... int[ 4·( e-[p,q]-[3k+r]( (-1)·(1/m)·(pq)·k·(1/r)^{2}·(1/v)·t ) )^{2} ]...
... d[(-1)·(1/m)·(pq)·k·(1/r)^{2}·(1/v)·t] = ...
... (-1)·(pq)·k·(1/r)^{2}·v·(3/2)·( e-[p,q]-[3k+r]( (-1)·(1/m)·(pq)·k·(1/r)^{2}·(1/v)·t ) )^{2}
Ley: [ de fuerza Lorentz ]
F(x,y,z) = (pq)·k·(1/r)^{3}·< x,y,z >
L(x,y,z) = (-1)·(pq)·k·(1/r)^{3}·( r/(iv) )·< d_{t}[x],d_{t}[y],d_{t}[z] >
F(x,y,z)+L(x,y,z) = 0
x(t) = e^{(v/r)·it}·cos(s)·cos(w)
y(t) = e^{(v/r)·it}·sin(s)·cos(w)
z(t) = e^{(v/r)·it}·sin(w)
Anexo:
La fuerza de atracción es elíptica.
La fuerza de repulsión es hiperbólica.
Estupidez:
(m/2)·d_{t}[x]^{2} = U(x)
d_{t}[ (m/2)·d_{t}[x]^{2} ] = d_{t}[ U(x) ]
m·d_{t}[x]·d_{tt}^{2}[x] = d_{x}[ U(x) ]·d_{t}[x]
m·d_{tt}^{2}[x] = d_{x}[ U(x) ] = F(x)
Mecánica I:
Ley:
La energía cinética es un trabajo de posición del operador de Newton.
La potencia cinética es un trabajo de velocidad del operador de Newton.
Ley:
La energía potencial es un trabajo de posición,
de una fuerza dependiente de la posición.
La potencia energética es un trabajo de velocidad,
de una fuerza dependiente de la velocidad.
Ley: [ fundamental de la energía ]
m·d_{tt}^{2}[x] = sum[k = 1]-[n][ F_{k}(x) ]
<==>
(m/2)·d_{t}[x]^{2} = sum[k = 1]-[n][ U_{k}(x) ]
Ley: [ fundamental de la potencia ]
m·d_{tt}^{2}[x] = sum[k = 1]-[n][ F_{k}( d_{t}[x] ) ]
<==>
m·( d_{t}[x] )^{[o(t)o] 2} = sum[k = 1]-[n][ N_{k}( d_{t}[x] ) ]