sábado, 29 de mayo de 2021

gwzhenen-coment

vurezh wonet-banat to maket-kazher an gwzhen-cofi?

nurezh wonet-banat to maket-kazher an gwzhen-cofi.


thul cotet-kazhed se stoat-banat to frostet-kazhing.

thul cotet-kazhed se stoat-banat to hotet-kazhing.


I vazher stoat-banat to taket-kazhing an cotet-kazhed,

wizh my kador-friends.

I vazher stoat-banat ket to taket-kazhing an cotet-kazhed,

wizhawt my kador-friends.


nurezh stoat-banat kozhed to taket-kazhing an cotet-kazhetezh.

nurezh stoat-banat kozhed ket to taket-kazhing an cotet-kazhetezh.


thul kador-bar stoat-banat sraket-kazhed.

thul kador-bar stoat-banat closet-kazhed.


hitezhen kador-car,

stoat-banat hirezhen,

wel aparket-kazhed.

shitezhen kador-car,

stoat-banat shirezhen,

bad aparket-kazhed.


thul-he that walket-banat by thul gwzhenen-tenebry,

wotchet-banat ket thul kador-way.

thul-he that walket-banat by thul gwzhenen-light,

wotchet-banat thul kador-way.


he stoat-banat hirezhen,

in my right costet-kazhed.

she stoat-banat hirezhen,

in my left costet-kazhed.

she stoat-banat shirezhen,

in yur left costet-kazhed.

he stoat-banat shirezhen,

in yur right costet-kazhed.


Teoría del Gaélical-Irish:


thul [o] an

hitezhen [o] shitezhen

hirezhen [o] shirezhen


-kazher

-kazhed

-kazhing


present:

-banat [o] -banat ket


I

yu

he

she


nurezh

vurezh

hiezh

shiezh


kador-plat.

kador-plate.

error: métodes numérics

f(x_{i}) = | x+(-1)·x_{i} |


f(x_{i}+y_{i}) [< f(x_{i})+f(y_{i})

| ( x+y )+(-1)·( x_{i}+y_{i} ) | [< | x+(-1)·x_{i} |+| y+(-1)·y_{i} |


1+1 = 2

0.75+1.25 = 2

0 = f(0.75+1.25) [< f(0.75)+f(1.25) = 0.50


f(x_{i}·y_{i}) [< |y_{i}|·f(x_{i})+f(x_{i})·f(y_{i})+|x_{i}|·f(y_{i})

| ( x·y )+(-1)·( x_{i}·y_{i} ) | [< |y|| x+(-1)·x_{i} |+|x_{i}|| y+(-1)·y_{i} |

| ( x·y )+(-1)·( x_{i}·y_{i} ) | [< |y_{i}|| x+(-1)·x_{i} |+|x|| y+(-1)·y_{i} |


si ( x [< (-1) || 1 [< x ) ==>

f(1/x_{i}) [< (1/|x_{i}|)·f(x_{i})

si (-1) < x < 1 ==>

f(1/x_{i}) >] (1/|x_{i}|)·f(x_{i})


| (1/x)+(-1)·(1/x_{i}) | = |x_{i}+(-x)|/( |x|·|x_{i}| ) [< ...

... |x_{i}+(-x)|/( |x_{i}+(-x)|·|x_{i}|+(-1)·|x_{i}|^{2} )

f(1/x_{i}) [< (1/|x_{i}|)·f(x_{i})/( f(x_{i})+(-1)·|x_{i}| )


f(y_{i}/x_{i}) [< (1/|x_{i}|)·( ( |x_{i}|·f(y_{i})+|y_{i}|·f(x_{n}) )/( f(x_{i})+(-1)·|x_{i}| ) )

| (y/x)+(-1)·(y_{i}/x_{i}) | [< ( |x_{i}||y+(-1)·y_{i}|+|y_{i}||x_{i}+(-x)| )/( |x|·|x_{i}| )


si x [< (-1) || 1 [< x ==>

f(y_{i}/x_{i}) [< (1/|x_{i}|)·( |x_{i}|·f(y_{i})+|y_{i}|·f(x_{n}) )

si (-1) < x || x < 1 ==>

f(y_{i}/x_{i}) >] (1/|x_{i}|)·( |x_{i}|·f(y_{i})+|y_{i}|·f(x_{n}) )


f( (x_{i})^{2} ) [< ( f(x_{i}) )^{2}+2·|x_{i}|·f(x_{i})

| x^{2}+(-1)·(x_{i})^{2} | = |x+(-1)·x_{i}|·|x+x_{i}|


Si x >] x_{i} ==>

f( ln(x_{i}) ) [< ln( f(x_{i})/|x_{i}|+1 )

| ln(x)+(-1)·ln(x_{i}) | = |ln(x/x_{i})|


f( e^{x_{i}} ) [< ( e^{f(x_{i})}+1 )·e^{|x_{i}|}

| e^{x}+(-1)·e^{x_{i}} | [< |e^{x+(-1)·x_{i}+x_{i}}|+|e^{x_{i}}|

imatge y sonit

A^{j}_{i}·( cos(at)+i·sin(at) )

B^{j}_{i}·( cosh(i·bt)+sinh(i·bt) )


a = frecuencia de la ona portadora [ fibra óptica en color ]-[ ona hertzaria ]

b = to de la escala musical.

A^{j}_{i} = matriu de imatge.

B^{j}_{i} = matriu de sonit.


( cos(at)+i·sin(at) )

( cosh(i·bt)+sinh(i·bt) )


led monocromàtic.

speaker monocromàtic.

º

8 colors visibles.

8 octaves audibles.


infra-rojos

infra-so

ultra-violeta

ultra-so

jueves, 27 de mayo de 2021

música

[00+01][00+04][00+04][00+04] = 13k

[00+04][00+07][00+07][00+07] = 25k = 5^{2}k

[00+07][00+10][00+10][00+10] = 37k

[00+10][12+01][12+01][12+01] = 49k = 7^{2}k

49 = 37+12 = (25+12)+12 = ( (13+12)+12 )+12


[00+01][00+05][00+08][00+05] = 19k

[00+01][00+08][00+08][00+08] = 25k = 5^{2}k

[00+07][00+11][12+02][00+11] = 43k

[00+07][12+02][12+02][12+02] = 49k = 7^{2}k

49 = 43+6 = ( 25+18 )+6 = ( (19+6)+18 )+6


[00+01][00+04][00+08][00+04] = 17k

[00+02][00+07][00+07][00+07] = 23k

[00+07][00+10][12+02][00+10] = 41k

[00+08][12+01][12+01][12+01] = 47k

47 = 41+6 = ( 23+18 )+6 = ( (17+6)+18 )+6

ecuacions diferencials

d_{x}[ ln( plot[(-n)]-[o(x)o]-e(x) ) ] = ( plot[(-n)]-[o(x)o]-e(x) )^{(-n)}

d_{x}[ plot[(-n)]-[o(x)o]-e(x) ] = ( plot[(-n)]-[o(x)o]-e(x) )^{(-n)+1}


d_{x}[ ln( plot[n]-[o(x)o]-e(x) ) ] = ( plot[n]-[o(x)o]-e(x) )^{n}

d_{x}[ plot[n]-[o(x)o]-e(x) ] = ( plot[n]-[o(x)o]-e(x) )^{n+1}


d_{x}[ ln( plot[(-n)]-[o(x)o]-e(x) ) ] = ...

... ( plot[(-n)]-[o(x)o]-e(x) )^{(-1)}·d_{x}[ plot[(-n)]-[o(x)o]-e(x) ]

d_{x}[ ln( plot[n]-[o(x)o]-e(x) ) ] = ...

... ( plot[n]-[o(x)o]-e(x) )^{(-1)}·d_{x}[ plot[n]-[o(x)o]-e(x) ]


y(x) [o(x)o] ln( d_{x}[y(x)] ) = cx

plot[1]-[o(x)o]-ln( d_{x}[y(x)] ) = cx

y(x) = int[ plot[(-1)]-[o(x)o]-e(cx) ] d[x]

y(x) = (1/2)·cx^{2}

plot[(-1)]-[o(x)o]-e(x) = x


d_{x}[y(x)]^{n}·d_{xx}^{2}[y(x)] = d_{x}[y(x)]

( y(x) )^{[o(x)o]n} [o(x)o] ln( d_{x}[y(x)] ) = x

plot[n]-[o(x)o]-ln( d_{x}[y(x)] ) = x

y(x) = int[ plot[(-n)]-[o(x)o]-e(x) ] d[x]


d_{xx}^{2}[y(x)] = d_{x}[y(x)]^{n+1}

( y(x) )^{[o(x)o](-n)} [o(x)o] ln( d_{x}[y(x)] ) = x

plot[(-n)]-[o(x)o]-ln( d_{x}[y(x)] ) = x

y(x) = int[ plot[n]-[o(x)o]-e(x) ] d[x]


( y(x) )^{[o(x)o]n} [o(x)o] e^{d_{x}[y(x)]} = x

plov[n]-[o(x)o]-e( d_{x}[y(x)] ) = x

y(x) = int[ plov[(-n)]-[o(x)o]-ln(x) ] d[x]


d_{x}[ plov[(-n)]-[o(x)o]-ln(x) ] = ...

... ( plov[(-n)]-[o(x)o]-ln(x) )^{(-n)}·e^{(-1)·plov[(-n)]-[o(x)o]-ln(x)}

d_{x}[ e^{plov[(-n)]-[o(x)o]-ln(x)} ] = ( plov[(-n)]-[o(x)o]-ln(x) )^{(-n)}

miércoles, 26 de mayo de 2021

Elecciones

Madrid-Cásteldor:

PP = 65

Más-Madrid = 25

PSOE = 25

UP = 10

precio del metro = 1.05€

precio de cercanías 2 zonas = 1.55€

precio del peaje = 2.05€


Aragó-Càteldor:

PSOE = 33

ERC = 33

Junts = 32

CUP = 11

UP = 8

Cs = 5

PP = 3

precio del metro = 2€

precio de cercanías 2 zonas = 3€

precio del peaje = 4€


Naffarrotzak-Éuskaldor:

PNV = 16

EH-Bildu =12

PSOE = 6

UP = 4

PP = 2


Paisotzok Astur-Nort-koashek:

PRC = 5

PP = 3

PSOE = 2


Galicialdor:

PP = 11

BNG = 6

PSOE = 3


Portugale-y:

PS = 15

PSD = 13

BE = 2

analisis matemàtic

x [< y+x <==> 0 [< y

x >] y+x <==> 0 >] y


x < y+x <==> 0 < y

x > y+x <==> 0 > y


(n+1)x [< y+x <==> nx [< y

(n+1)x >] y+x <==> nx >] y


(n+1)x < y+x <==> nx < y

(n+1)x > y+x <==> nx > y


x+y [< f(x)+y <==> x [< f(x)

x+y >] f(x)+y <==> x >] f(x)


x+y < f(x)+y <==> x < f(x)

x+y > f(x)+y <==> x > f(x)

álgebra

c^{log_{c^{n}}(c)} = c^{(1/n)}

log_{c^{n}}(c) = log_{c}(c^{(1/n)}) = (1/n)

c = (c^{n})^{(1/n)}


n[+]m = ( (n+m)/(1+1) ) = ((n+m)/2)

n[+]0 = (n/2)

x^{n}[·]x^{m} = x^{((n+m)/2)}

x^{n}[·]1 = x^{(n/2)}


m[+]...(n)...[+]m = m·( 1[+]...(n)...[+]1 ) = m

x^{m}[·]...(n)...[·]x^{m} = x^{m·( 1[+]...(n)...[+]1 )} = x^{m}


a[·]b = x^{log_{x}(a)}[·]x^{log_{x}(b)} = x^{( (log_{x}(ab))/2 )} = (ab)^{(1/2)}


a[·]( p+q ) = x^{log_{x}(a)}[·]x^{log_{x}( p+q )} = ( ap+aq )^{(1/2)}

a[·]( p[+] q) = x^{log_{x}(a)}[·]x^{log_{x}( p[+]q )} = ( ap[+]aq )^{(1/2)}


( ca·x^{n} )^{(1/2)}+( cb·x^{m} )^{(1/2)} = c

(ca)[·]x^{n}+(cb)[·]x^{m} = c

x = c^{( 1/( ( ( log_{c}(a) )+n ) [[+]] ( ( log_{c}(b) )+m ) )}

c^{( ( 1+log_{c}(a) )[+]( n/( ( ( log_{c}(a) )+n ) [[+]] ( ( log_{c}(b) )+m ) ) ) ) )}

c^{( ( 1+log_{c}(b) )[+]( m/( ( ( log_{c}(a) )+n ) [[+]] ( ( log_{c}(b) )+m ) ) ) ) )}


( 2x^{3} )^{(1/2)}+( 4x^{2} )^{(1/2)} = 2

2[·]x^{3}+4[·]x^{2} = 2

x = 2^{( 1/( ( 4 ) [[+]] ( 4 ) ) )}


( 3x^{7} )^{(1/2)}+( 9x^{6} )^{(1/2)} = 3

3[·]x^{7}+9[·]x^{6} = 3

x = 3^{( 1/( ( 8 ) [[+]] ( 8 ) ) )}

martes, 25 de mayo de 2021

mecànica teoría

[[k]]( f(x) )^{(1/k)} = f(x)

[[1]]( f(x) ) = f(x)

s·[[k]]( f(x) ) = [[k]]( s^{k}·f(x) )

[[k+1]]( f(x) ) = [[k]]( d_{x}[f(x)] )

d_{x}[ [[k+1]]( f(x) ) ] = [[k]]( d_{x}[f(x)] )

int[ [[k]]( d_{x}[f(x)] ) ] d[x] = [[k+1]]( f(x) )


(1/k!)·(m/c^{k+(-2)})·d_{t}[x(t)]^{k} = E_{n}+(a_{k}/k!)·( x(t) )^{k}

x(t) = [[(1/k)]]( e^{(a_{k}/m)·c^{k+(-2)}·t}+(-1)·(k!/a_{k})·E_{n} )

d_{t}[x(t)] = [[(1/k)+(-1)]]( (a_{k}/m)·c^{k+(-2)}e^{(a_{k}/m)·c^{k+(-2)}·t} )

[[1+(-k)]]( ( (a_{k}/m)·c^{k+(-2)} )^{k}e^{(a_{k}/m)·c^{k+(-2)}·t} ) = ...

... e^{(a_{k}/m)·c^{k+(-2)}·t}


(m/p!)·d_{t}[x(t)]^{p} = E_{n}+a_{q}·(1/q!)·( x(t) )^{q}

x(t) = [[(1/q)]]( e^{(a_{q}/m)·(p!/q!)·t}+(-1)·(q!/a_{q})·E_{n} )

d_{t}[x(t)] = [[(1/q)+(-1)]]( (a_{q}/m)·(p!/q!)·e^{(a_{q}/m)·(p!/q!)·t} )

[[(p/q)+(-p)]]( ( (a_{q}/m)·(p!/q!) )^{p}( (a_{q}/m)·(p!/q!) )^{1+(-1)·(p/q)}·...

... e^{(a_{q}/m)·(p!/q!)·t} ) = [[(0/0)+(-0)]]( e^{(a_{q}/m)·(p!/q!)·t} ) = ...

... [[(0/q)+(-0)]]( (a_{q}/m)·(p!/q!)·e^{(a_{q}/m)·(p!/q!)·t} ) = e^{(a_{q}/m)·(p!/q!)·t}

lunes, 24 de mayo de 2021

mecànica cuàntica

d_{x}[ [k+1]( f(x) [o( (1/(k+1)!)x^{k+1} )o] g(x) ) ] = ...

... [k]( d_{x}[f(x)] [o( (1/k!)x^{k} )o] d_{x}[g(x)] ) [o( (1/k!)x^{k} )o] ...

... d_{x}[f(x)] [o( (1/k!)x^{k} )o] d_{x}[g(x)]


int[ [k]( d_{x}[f(x)] [o( (1/k!)x^{k} )o] d_{x}[g(x)] ) ] d[x] = ...

... [k+1]( f(x) [o( (1/(k+1)!)x^{k+1} )o] g(x) ) [o( (1/(k+1)!)x^{k+1} )o] ...

... ( f(x) [o( (1/(k+1)!)x^{k+1} )o] g(x) )^{[o(x)o](-1)}

 

[k]( d_{x}[f(x)] [o( (1/k!)x^{k} )o] d_{x}[g(x)] ) = [k+1]( f(x) [o( (1/(k+1)!)x^{k+1} )o] g(x) )


Lagranià cuàntic de primera especie:

( h^{2}/(2ml) )·d_{x}[f(x)] = ( E_{n}+qA(x) )·f(x)


f(x) = [1]( ( (2ml)/h^{2} )·x [o(x)o] int[ ( E_{n}+qA(x) ) ] d[x] )

f(x) = [0]( ( (2ml)/h^{2} )·( E_{n}+qA(x) ) )


Lagranià cuàntic de segona especie:

( h^{2}/(2m) )·d_{xx}^{2}[f(x)] = ( E_{n}+qA(x) )·f(x)


f(x) = [2]( ( (2m)/h^{2} )^{(1/2)}·(1/2!)·x^{2} [o( (1/2!)·x^{2} )o] ...

... int[ int[ ( E_{n}+qA(x) )^{(1/2)} ] d[x] ] d[x] )

f(x) = [0]( ( (2m)/h^{2} )^{(1/2)}·( E_{n}+qA(x) )^{(1/2)} )


Lagranià cuàntic de hyper-espai:

( (l^{n}h^{2})/(2m) )·d_{x...x}^{n+2}[f(x)] = ( E_{n}+qA(x) )·f(x)


f(x) = [n+2]( ( (2m)/(l^{n}h^{2}) )^{(1/(n+2))}·(1/(n+2)!)·x^{n+2} [o( (1/(n+2)!)·x^{n+2} )o] ...

... int[ ...(n+2)... int[ ( E_{n}+qA(x) )^{(1/(n+2))} ] d[x] ...(n+2)... ] d[x] )

f(x) = [0]( ( (2m)/(l^{n}h^{2}) )^{(1/(n+2))}·( E_{n}+qA(x) )^{(1/(n+2))} )


Hamiltonià cuàntic:

ih·d_{t}[f(x,t)] = ( E_{n}+qA(x) )·f(x,t)

ih·d_{x}[f(x,t)]·d_{t}[x] = ( E_{n}+qA(x) )·f(x,t)


f(x,t) = [1]( ((-i)/h)·x [o(x)o] int[ (1/d_{t}[x]) ] d[x] [o(x)o] int[ ( E_{n}+qA(x) ) ] d[x] )

f(x,t) = [0]( ((-i)/h)·(1/d_{t}[x])·( E_{n}+qA(x) ) )


Hamiltonià cuàntic de camp constant:

ih·d_{t}[f(x,t)] = ( E_{n}+qgx )·f(x,t)

ih·d_{x}[f(x,t)]·d_{t}[x] = ( E_{n}+qgx )·f(x,t)


f(x,t) = [1]( ((-i)/h)·x [o(x)o] t [o(x)o] ( E_{n}x+qg·(1/2)·x^{2} ) )

f(x,t) = [0]( ((-i)/h)·( m/(qgt) )·( E_{n}+qgx ) )


(m/2)·d_{t}[x(t)]^{2} = E_{n}+qg·x(t)

x(t) = ( (qg)/m )·(1/2)·t^{2}+(-1)·( E_{n}/(qg) )

d_{t}[x(t)] = ( (qg)/m )·t


[[1]]( f(x) ) = f(x)

[[k]]( f(x) )^{(1/k)} = f(x)

[[k]]( s^{k}·f(x) ) = s·[[k]]( f(x) )


d_{x}[ [[k+1]]( f(x) ) ] = [[k]]( d_{x}[f(x)] )

int[ [[k]]( d_{x}[f(x)] ) ] d[x] = [[k+1]]( f(x) )

[[k+1]]( f(x) ) = [[k]]( d_{x}[f(x)] )


(m/2)·d_{t}[x(t)]^{2} = E_{n}+(a/2)·( x(t) )^{2}

x(t) = [[(1/2)]]( e^{(a/m)t}+(-1)·(2/a)·E_{n} )

d_{t}[x(t)] = [[(-1)(1/2)]]( (a/m)·e^{(a/m)t} )

[[(-1)]]( (a/m)^{2}·e^{(a/m)t} ) = e^{(a/m)t}


Hamiltonià cuàntic de oscilador harmónic:

ih·d_{t}[f(x,t)] = ( E_{n}+(a/2)·x^{2} )·f(x,t)

ih·d_{x}[f(x,t)]·d_{t}[x] = ( E_{n}+(a/2)·x^{2} )·f(x,t)


f(x,t) = [1]( ((-i)/h)·x [o(x)o] t [o(x)o] ( E_{n}x+(a/6)·x^{3} ) )

f(x,t) = [0]( ((-i)/h)·( [[(1/2)]]( (a/m)·e^{(a/m)t} ) )·( E_{n}+(a/2)·x^{2} ) )

mecànica teoría

Si m·d_{tt}^{2}[x(t)] = f(t) ==> (1) & (2) & (3)

(1): d_{tt}^{2}[x(t)] = (1/m)·f(t)

(2): d_{t}[x(t)] = (1/m)·int[ f(t) ] d[t]

(3): x(t) = (1/m)·int[ int[ f(t) ] d[t] ] d[t]


Si ( m·d_{tt}^{2}[x(t)] = a·( x(t) )^{n} <==> (m/2)·d_{t}[x(t)]^{2}= ( a/(n+1) )( x(t) )^{n+1} ) ==> ...

... (1) & (2) & (3)

Demostració: ( k+(-2) = kn || 2k+(-2) = k·(n+1) )

(1): x(t) = ...

... ( ( (1+(-n))/(n+1) )^{(1/2)}·( (1+(-n))/2 )^{(1/2)}·(a/m)^{(1/2)}·t )^{2/(1+(-n))}

(2): d_{t}[x(t)] = ...

... ( (1+(-n))/(n+1) )^{(1/2)}·( 2/(1+(-n)) )^{(1/2)}·(a/m)^{(1/2)}·...

... ( ( (1+(-n))/(n+1) )^{(1/2)}·( (1+(-n))/2 )^{(1/2)}·(a/m)^{(1/2)}·t )^{(n+1)/(1+(-n))}

(3): d_{tt}^{2}[x(t)] = ...

... (a/m)·( ( (1+(-n))/(n+1) )^{(1/2)}·( (1+(-n))/2 )^{(1/2)}·(a/m)^{(1/2)}·t )^{(2n)/(1+(-n))}

domingo, 23 de mayo de 2021

mecànica

m·d_{t}[x(t)] = a·( x(t) )^{(2/3)}

d_{tt}^{2}[x(t)] = (a/m)·(2/3)·( x(t) )^{(-1)·(1/3)}·d_{t}[x(t)]

d_{tt}^{2}[x(t)]^{2} = (a/m)^{3}·(4/9)·d_{t}[x(t)]

d_{tt}^{2}[x(t)]·d_{t}[x(t)]^{(-1)·(1/2)} = (a/m)^{(3/2)}·(2/3)

d_{t}[x(t)]^{(1/2)} = (1/3)·(a/m)^{(3/2)}·t

d_{t}[x(t)] = (1/9)·(a/m)^{3}·t^{2}

x(t) = (1/27)·(a/m)^{3}·t^{3}

d_{tt}^{2}[x(t)] = (2/9)·(a/m)^{3}·t

(1/2)·d_{t}[x(t)]^{2} = (1/2)·(1/81)·(a/m)^{6}·t^{4}

comentari

él <==> ell

ella <==> ell-na

ellos <==> ells

ellas <==> ell-nas


aquel <==> aquell

aquella <==> aquell-na

aquellos <==> aquells

aquellas <==> aquell-nas


íshtep <==> aquíshtep

íshtep-na <==> aquíshtep-na

íshtep-nos <==> aquíshteps

íshtep-nas <==> aquíshtep-nas


íshep <==> aquíshep

íshep-na <==> aquíshep-na

íshep-nos <==> aquísheps

íshep-nas <==> aquíshep-nas


un <==> un

una <==> una

unos <==> uns

unas <==> unas


lo <==> el

la <==> la

los <==> els

las <==> las


lo que <==> el que

la que <==> la que

los que <==> els que

las que <==> las que


íshtep coche,

està mal aparcado.

íshep coche,

està bien aparcado.

íshtep-na casa

vale mucho dinero.

íshep-na casa

vale poco dinero.