viernes, 14 de enero de 2022

borrós trannsitiu y equilibri químic

( x_{0} [< x_{n} & x_{n} [< x_{n+1} ) <==> x_{0} [< x_{n+1}

min{(0.n),(0.1)} [< (0.n+1)

max{(-1)·(0.n),(-1)·(0.1)} >] (-1)·(0.n+1)


( x_{0} >] x_{n} & x_{n} >] x_{n+1} ) <==> x_{0} >] x_{n+1}

min{(-1)·(0.n),(-1)·(0.1)} >] (-1)·(0.n+1)

max{(0.n),(0.1)} [< (0.n+1)


[4·H_{2}][O_{4}] = [4·e^{(-1)}]·[4·H_{2}O]

[3e^{(-1)}][2·H_{2}][O_{4}] = [8·e^{(-1)}]·[2·H_{2}O_{2}]


[CH_{4}][O_{4}] = [4e^{(-1)}][CH_{4}O_{4}]

[NH_{3}][O_{3}] = [3e^{(-1)}][NH_{3}O_{3}]


[C_{2}H_{6}][O_{4}] = [4e^{(-1)}][C_{2}H_{6}O_{4}]

[C_{3}H_{8}][O_{4}] = [4e^{(-1)}][C_{3}H_{8}O_{4}]


[N_{2}H_{4}][O_{4}] = [4e^{(-1)}][N_{2}H_{4}O_{4}]

[N_{3}H_{5}][O_{4}] = [4e^{(-1)}][N_{3}H_{5}O_{4}]


1 destructor

(NH)-(CH_{2})-(CH_{2})-(CH_{2})-(CH_{2})-(NH)

1 constructor

(NH)-(CH_{2})-(CH_{2})-(CH_{2})-(CH_{2})-(CH_{2})-(CH_{2})-(NH)


1 destructor

H-(CH_{2})-(CH_{2})-(CH_{2})-(CH_{2})-H

1 constructor

H-(CH_{2})-(CH_{2})-(CH_{2})-(CH_{2})-(CH_{2})-(CH_{2})-H


Potencia 1 en tenebres:

L(x,u,v,t) = qg·( x(u,v,t) )^{n}+(-1)·h^{n}·(c/l)·V·(1/2)·t^{2}( e^{iu·t}+e^{iv·t} )

x(u,v,t) = ( (c/l)·V·(1/2)·t^{2}( e^{iu·t}+e^{iv·t} ) )^{(1/n)}

h = ( qg )^{(1/n)}

( qg )^{(1/n)} = ( m·(c/l)·V )^{(1/n)}

( qg·t )^{(1/n)} = ( m·(c/l)·V·t )^{(1/n)}

( qg·(1/2)·t^{2} )^{(1/n)} = ( m·(c/l)·V·(1/2)·t^{2} )^{(1/n)}


Lley:

(m/2)·( d_{t}[s(t)]·r )^{2} = qg·sr <==> m·d_{tt}^{2}[s(t)]·r = qg

s(t) = ( (qg)/(mr) )·(1/2)·t^{2}

d_{t}[s(t)] = ( (qg)/(mr) )·t

d_{tt}^{2}[s(t)] = ( (qg)/(mr) )

Deducció:

d_{sr}[ (m/2)·( d_{t}[s]·r )^{2} ] = d_{t}[ (m/2)·( d_{t}[s]·r )^{2} ]·( 1/d_{t}[s]·r )


Ptincipi:

(m/2)·( d_{t}[s(r)]·r )^{2} = qg·pi·r


Lley:

qgy = qg·pi·r+(m/2)·( d_{t}[s(r)]·r )^{2}

y = 2pi·r

s(t) = (qg/m)^{(1/2)}·(4pi/r)^{(1/2)}·t


Acertijos en la oscuridad,

tengo que visitar al mago blanco,

en la torre negra de Isengard.

Acertijos en la claridad,

tengo que visitar al mago negro,

en la torre blanca de Isengard.


Lley:

(m/2)·d_{tt}^{2}[x(t)] = int[ f(t)·d_{t}[x] ]d[t]+(-1)·(a/2)( x(t) )^{2} <==> ...

... m·d_{tt}^{2}[x(t)] = f(t)+(-a)·x(t)

Deducció:

x(t) = ...

... int[ sin( (a/m)^{(1/2)}·t )·int[ sin( (a/m)^{(1/2)}·t )·(1/m)·f(t) ]d[t] ]d[t]+...

... int[ cos( (a/m)^{(1/2)}·t )·int[ cos( (a/m)^{(1/2)}·t )·(1/m)·f(t) ]d[t] ]d[t]

[1] d_{t}[ (1/2)·( int[ sin( (a/m)^{(1/2)}·t )·(1/m)·f(t) ]d[t] )^{2} ] = ...

... int[ sin( (a/m)^{(1/2)}·t )·(1/m)·f(t) ]d[t]·sin( (a/m)^{(1/2)}·t )·(1/m)·f(t)

[2] d_{t}[ (1/2)·( int[ cos( (a/m)^{(1/2)}·t )·(1/m)·f(t) ]d[t] )^{2} ] = ...

... int[ cos( (a/m)^{(1/2)}·t )·(1/m)·f(t) ]d[t]·cos( (a/m)^{(1/2)}·t )·(1/m)·f(t)

m·( [1]+[2] ) = f(t)·d_{t}[x]


Lley:

m·d_{tt}^{2}[x(t)] = F·( (a/m)^{(1/2)}t )^{n}+(-a)·x(t)

d_{t}[x(t)] = ...

... (F/m)·sin( (a/m)^{(1/2)}t )·...

... sin_{(2k+1)+n+1}( (a/m)^{(1/2)}t )·( (a/m)^{(1/2)}t )^{n+1}·(m/a)^{(1/2)}+...

... (F/m)·cos( (a/m)^{(1/2)}t )·...

... cos_{(2k)+n+1}( (a/m)^{(1/2)}t )·( (a/m)^{(1/2)}t )^{n+1}·(m/a)^{(1/2)}

x(t) = ...

... (F/m)·( ...

...(-1)·cos( (a/m)^{(1/2)}t )·sin_{(2k+1)+n+1}( (a/m)^{(1/2)}t )^{n+1}·(m/a) ...

... )+...

... (F/m)·( ...

... sin( (a/m)^{(1/2)}t )·cos_{(2k+1)+n+1}( (a/m)^{(1/2)}t )^{n+1}·(m/a) ...

... )

Deducció:

[1] d_{t}[ ( F^{2}/a )·(1/2)·( ...

... sin_{(2k+1)+n+1}( (a/m)^{(1/2)}t )·( (a/m)^{(1/2)}t )^{n+1} ...

... )^{2} ] = ...

... ( F^{2}/a )·( sin_{(2k+1)+n+1}( (a/m)^{(1/2)}t )·( (a/m)^{(1/2)}t )^{n+1} )·...

... sin( (a/m)^{(1/2)}t )·(a/m)^{(1/2)}·( (a/m)^{(1/2)}t )^{n}

[2] d_{t}[ ( F^{2}/a )·(1/2)·( ...

... cos_{(2k)+n+1}( (a/m)^{(1/2)}t )·( (a/m)^{(1/2)}t )^{n+1} ...

... )^{2} ] = ...

... ( F^{2}/a )·( cos_{(2k)+n+1}( (a/m)^{(1/2)}t )·( (a/m)^{(1/2)}t )^{n+1} )·...

... cos( (a/m)^{(1/2)}t )·(a/m)^{(1/2)}·( (a/m)^{(1/2)}t )^{n}

[1]+[2] = f(t)·d_{t}[x(t)]


Lley:

m·d_{tt}^{2}[x(t)] = F·e^{(a/m)^{(1/2)}·t}+(-a)·x(t)

d_{t}[x(t)] = (F/m)·(1/2)·e^{(a/m)^{(1/2)}·t}·(m/a)^{(1/2)}

x(t) = (F/m)·(1/2)·e^{(a/m)^{(1/2)}·t}·(m/a)

Deducció:

d_{t}[ (1/4)·F^{2}·(1/a)·e^{2·(a/m)^{(1/2)}·t} ] = f(t)·d_{t}[x(t)]


Teorema:

( n!/( (m+(-1))!(n+(-m)+1)! ) )+( n!/( m!(n+(-m))! ) ) = ( (n+1)!/( m!((n+1)+(-m))! ) )

miércoles, 12 de enero de 2022

juegos odiar y amar

Juego amar:

Fiel

< n,n >

F(n) = n^{2}+2n

Se juega a ganar,

porque no hay condenación.

Infiel

< (-n),n >

F(n) = n^{2}

Se juega a perder,

porque hay condenación.

Juego odiar:

Fiel

< (-n),(-n) >

F(n) = n^{2}+(-2)·n

Se juega a perder,

porque hay condenación.

Infiel

< n,(-n) >

F(n) = n^{2}

Se juega a ganar,

porque no hay condenación.


Juego de las autonomías:

n = territorios geográficos

n = autonomías

1 = país soberano

< n,1 >

F(n) = 2n+1

Siendo anti-facha se juega a ganar.

1 = autonomía

(-n) = países no soberanos

< 1,(-n) >

F(n) = (-2)·n+1

Siendo facha se juega a perder.


Teorema:

¬( [Ex][Ey][Ez][ x,y,z € Z & x^{3}+y^{3} = z^{3} )

Demostració:

x^{3}+y^{3} = z^{3}

(x+y)^{3}+(-3)·xy·(x+y) = z^{3}

(u+v)^{3}+(-3)·xy·(u+v) = z^{3}

u = ( (1/2)·( z^{3}+( z^{6}+(-4)·(xy)^{3} )^{(1/2)} )^{(1/3)}

v = ( (1/2)·( z^{3}+(-1)·( z^{6}+(-4)·(xy)^{3} )^{(1/2)} )^{(1/3)}

z^{6} = 4·(xy)^{3}

z = 2^{(1/3)}·(xy)^{(1/2)}

x = a^{(1/3)} & y = a^{(1/3)} & z = (2a)^{(1/3)}


Lley:

(x/w) = ( x/(u+w) )+( x/(v+(-w)) ) <==> ...

... ( w = u+( u^{2}+uv )^{(1/2)} || w = u+(-1)·( u^{2}+uv )^{(1/2)} )

Deducció:

(-1)·uv+(-2)·u·w+w^{2} = 0

w = (1/2)·( 2u+( 4u^{2}+4·uv )^{(1/2)} )

w = (1/2)·( 2u+(-1)·( 4u^{2}+4·uv )^{(1/2)} )

w = u+( u^{2}+uv )^{(1/2)} || w = u+(-1)·( u^{2}+uv )^{(1/2)}


Lley:

(-1)·(x/w) = ( x/(u+w) )+( x/(v+(-w)) ) <==> ...

... ( w = v+( v^{2}+uv )^{(1/2)} || w = v+(-1)·( v^{2}+uv )^{(1/2)} )

Deducció:

(-1)·uv+(-2)·v·w+w^{2} = 0

w = (1/2)·( 2v+( 4v^{2}+4·uv )^{(1/2)} )

w = (1/2)·( 2v+(-1)·( 4v^{2}+4·uv )^{(1/2)} )

w = v+( v^{2}+uv )^{(1/2)} || w = v+(-1)·( v^{2}+uv )^{(1/2)}


Principi:

Sigui v^{2} = w^{2}+u^{2} ==>

t(x) = ( ( d^{2}+x^{2} )^{(1/2)}/u )+( ( S+(-x) )/v )


Lley:

t(x) = ( v·( d^{2}+x^{2} )^{(1/2)}+( S+(-x) )·u )/(uv) )

d_{x}[t(x)] = ( d^{2}+x^{2} )^{(-1)·(1/2)}·xv+(-u)

t(x) té un mínim a x = ( (ud)^{2}/w^{2} )^{(1/2)}

Deducció

(xv)^{2} = (ud)^{2}+(ux)^{2}

x^{2}·( v^{2}+(-1)·u^{2} ) = (ud)^{2}

x = ( (ud)^{2}/( v^{2}+(-1)·u^{2} ) )^{(1/2)}


Principi:

Sigui v^{2} = w^{2}+(-1)·u^{2} ==>

t(y) = ( ( h^{2}+(-1)·y^{2} )^{(1/2)}/u )+( y/v )


Lley:

t(y) = ( v·( h^{2}+(-1)·y^{2} )^{(1/2)}+yu )/(uv) )

d_{y}[t(y)] = ( h^{2}+(-1)·y^{2} )^{(-1)·(1/2)}·(-1)·yv+u

t(y) té un màxim a y = ( (uh)^{2}/w^{2} )^{(1/2)}

Deducció

(yv)^{2} = (uh)^{2}+(-1)·(uy)^{2}

y^{2}·( v^{2}+u^{2} ) = (uh)^{2}

y = ( (uh)^{2}/( v^{2}+u^{2} ) )^{(1/2)}


Gallegu:

pernatune-y de puerku.

pernatune-y de puerku senglare-dush-ne.


vore cantare-dush-ne,

una cantshiune-y contigu.

varash cantare-dush-ne,

una cantshiune-y conmigu.


Castellán-Portugués

pernatón de puerko.

pernatón de puerko senglaro.

pernatune-y de puerku.

pernatune-y de puerku senglaru.


vaitx-de-tek cantatzi-ten-dut-zare-dut,

una cantziuna-tat-koashek amb tú-de-tek.

vas-de-tek cantatzi-ten-dut-zare-dut,

una cantziuna-tat-koashek amb yo-de-mek.

lunes, 10 de enero de 2022

cromodinámica cuántica de Gauge

Gravito-Electro-Fuerte:

Hardrones: SU(3)

3 quarks:

e^{(x+(-y))·it}·e^{(y+(-z))·it}·e^{(z+(-x))·it}

3 anti-quarks

e^{(y+(-x))·it}·e^{(z+(-y))·it}·e^{(x+(-z))·it}

protón + anti-protón: bcu+¬(bcu)

e^{(2/3)·it+(y+(-z))·it}·e^{(2/3)·it+(z+(-x))·it}·e^{(-1)·(1/3)·it+(x+(-y))·it}·...

... e^{(-1)·(2/3)·it+(z+(-y))·it}·e^{(-1)·(2/3)·it+(x+(-z))·it}·e^{(1/3)·it+(y+(-x))·it}

neutrón+anti-neutrón: tad+¬(tad)

e^{(-1)·(1/3)·it+(y+(-z))·it}·e^{(-1)·(1/3)·it+(z+(-x))·it}·e^{(2/3)·it+(x+(-y))·it}·...

... e^{(1/3)·it+(z+(-y))·it}·e^{(1/3)·it+(x+(-z))·it}·e^{(-1)·(2/3)·it+(y+(-x))·it}


Mesones: SU(2)

1 quark y 1 anti-quark

e^{(x+(-y))·it}·e^{(y+(-x))·it}

e^{(y+(-z))·it}·e^{(z+(-y))·it}

e^{(z+(-y))·it}·e^{(y+(-z))·it}

pión y anti-pión:

u(¬d)+(¬u)d

e^{(-1)·(1/3)·it+(x+(-y))·it}e^{(-1)·(2/3)·it+(y+(-x))·it}·...

... e^{(1/3)·it+(y+(-x))·it}e^{(2/3)·it+(x+(-y))·it}

t(¬b)+(¬t)b

e^{(-1)·(1/3)·it+(y+(-z))·it}e^{(-1)·(2/3)·it+(z+(-y))·it}·...

... e^{(1/3)·it+(z+(-y))·it}e^{(2/3)·it+(y+(-z))·it}

a(¬c)+(¬c)a

e^{(-1)·(1/3)·it+(z+(-x))·it}e^{(-1)·(2/3)·it+(x+(-z))·it}·...

... e^{(1/3)·it+(x+(-z))·it}e^{(2/3)·it+(z+(-x))·it}


Cuerdas Do-Deca-trónicas:

SU(2)

u+(¬u)

e^{(-1)·(1/6)·it+(u(x)+(-1)·v(x))·it}e^{(-1)·(1/6)·it+(v(x)+(-1)·u(x))·it}·...

... e^{(1/6)·it+(v(x)+(-1)·u(x))·it}e^{(1/6)·it+(u(x)+(-1)·v(x))·it}

d+(¬d)

e^{(1/3)·it+(u(x)+(-1)·v(x))·it}e^{(1/3)·it+(v(x)+(-1)·u(x))·it}·...

... e^{(-1)·(1/3)·it+(v(x)+(-1)·u(x))·it}e^{(-1)·(1/3)·it+(u(x)+(-1)·v(x))·it}


Gravito-Electro-Débil

Leptones: SU(2)

electrón+positrón eléctrico neutro gravitatorio:

e^{(-1)·it+( Z(x)+(-1)·W(x) )·it}·e^{(+1)·it+( W(x)+(-1)·Z(x) )·it}

electrón+positrón gravitatorio neutro eléctrico:

e^{(-1)·it+( W(x)+(-1)·Z(x) )·it}·e^{(+1)·it+( Z(x)+(-1)·W(x) )·it}

muón+anti-muón eléctrico neutro gravitatorio:

e^{(-1)·it+( Z(y)+(-1)·W(y) )·it}·e^{(+1)·it+( W(y)+(-1)·Z(y) )·it}

muón+anti-muón gravitatorio neutro eléctrico:

e^{(-1)·it+( W(y)+(-1)·Z(y) )·it}·e^{(+1)·it+( Z(y)+(-1)·W(y) )·it}

tauón+anti-tauón eléctrico neutro gravitatorio:

e^{(-1)·it+( Z(z)+(-1)·W(z) )·it}·e^{(+1)·it+( W(z)+(-1)·Z(z) )·it}

tauón+anti-tauón gravitatorio neutro eléctrico:

e^{(-1)·it+( W(z)+(-1)·Z(z) )·it}·e^{(+1)·it+( Z(z)+(-1)·W(z) )·it}


m(x)·c^{2} = h·G(x)·( W(x)+Z(x) )

m(y)·c^{2} = h·G(y)·( W(y)+Z(y) )

m(z)·c^{2} = h·G(z)·( W(z)+Z(z) )