sábado, 10 de octubre de 2020

bi-elípticas y bi-hiperbólicas

d_{t}[z(t)] = a·h^{m+1}+b·( n^{n+1}+(-1)·y^{n+1} )^{( (m+1)/(n+1) )}

z(t) = ( (-1)·( cos[h^{m+1},y^{n+1}](at) )^{[o(t)o](m+1)}+( sin[h^{m+1},y^{n+1}](bt) )^{[o(t)o](m+1)} )

h(t) = sin[h^{m+1},y^{n+1}](at)

y(t) = sin[h^{m+1},y^{n+1}](bt)


d_{tt}^{2}[y(t)] = (-1)·qg+2F·( y/( x^{2}+y^{2} )^{(1/2)} )

d_{t}[y(t)]^{2} = (-1)·qgy+2F·( x^{2}+y^{2} )^{(1/2)}

d_{t}[z(t)]^{2} = (-1)·qgh+2F·( x^{2}+y^{2} )^{(1/2)}

y(t) = norm[(z(t),h(t))-->y(t)][ ( (-1)·( cosh[h,y^{2}]( qg·t ) )+( sinh[h,y^{2}]( 2F·x^{3}·t ) ) )^{[o(t)o](1/2)} ]

( x^{2}+y^{2} )^{(1/2)} = x^{4}·( 1+(y/x)^{2} )^{(1/2)}


d_{tt}^{2}[x(t)] = (-1)·kx+2F·( x/( y^{2}+x^{2} )^{(1/2)} )

d_{t}[x(t)]^{2} = (-1)·(1/2)·kx^{2}+2F·( y^{2}+x^{2} )^{(1/2)}

d_{t}[z(t)]^{2} = (-1)·(1/2)·kh^{2}+2F·( y^{2}+x^{2} )^{(1/2)}

x(t) = norm[(z(t),h(t))-->x(t)][ ...

... ( ( cosh[h^{2},x^{2}]( (1/2)·k·t ) )+( sinh[h^{2},x^{2}]( 2F·y^{3}·t ) )^{[o(t)o](1/2)} )^{[o(t)o](1/2)} ...

... ]


funciones elípticas:

( cos[n](t) )^{n+1}+( sin[n](t) )^{n+1} = n^{(n+1)}

( cos[p](t) )^{p+1}+( sin[q](t) )^{q+1} = ( (p+q)/2 )^{((p+1)/2)+((q+1)/2)}

( sin[p](t) )^{p+1}+( cos[q](t) )^{q+1} = ( (p+q)/2 )^{((p+1)/2)+((q+1)/2)}

d_{t}[sin[p](t)] = cos[p](t)

d_{t}[sin[q](t)] = cos[q](t)

d_{t}[cos[p](t)] = (-1)·sin[p](t)

d_{t}[cos[q](t)] = (-1)·sin[q](t)

viernes, 9 de octubre de 2020

successions de recurrencia

{

a = 1;

b = 1;

for( k = 1 ; k [< n ; k++ )

{

c = a+b

b = a

a = c

escriure(a);

escriure(b);

}

}


{

a = not(1);

b = not(1);

for( k = not(1) ; k >] not(n) ; k-- )

{

not(c) = not(a)+not(b)

not(b) = not(a)

not(a) = not(c)

escriure(not(a));

escriure(not(b));

}

}


not(b) = a:

mov bx,a

mov ax,[bx]

mov bx,b

mov dx,ax

not dx

mov [bx],dx

}

not(b) = not(a):

mov bx,a

mov ax,[bx]

not ax

mov bx,b

mov dx,ax

not dx

mov [bx],dx

}


b = a:

mov bx,a

mov ax,[bx]

mov bx,b

mov dx,ax

mov [bx],dx

}

b = not(a):

mov bx,a

mov ax,[bx]

not ax

mov bx,b

mov dx,ax

mov [bx],dx

}


a_{n} = a_{n+(-1)}+a_{n+(-2)}

a_{1} = a ==> ...

... a_{6k+1} = (4k·11^{k+(-1)}+1)·a+(4k·(k+1))·6^{k+(-1)}·b

a_{2} = b ==> ...

... a_{6k+2} = (4k·(k+1))·6^{k+(-1)}·a+(4k·(3^{3(k+(-1))}+2)+1)·b

a_{3} = a+b ==> 

a_{4} = a+2b ==>

a_{5} = 2a+3b ==> 

a_{6} = 3a+5b ==> 

a_{7} = 5a+8b

a_{8} = 8a+13b

a_{9} = 13a+21b

a_{10} = 21a+34b

a_{11} = 34a+55b

a_{12} = 55a+89b

a_{13} = 89a+144b

a_{14} = 144a+233b

jueves, 8 de octubre de 2020

successions de recurrencia

a_{n} = a_{n+(-1)}+(-1)·a_{n+(-2)}

a_{6k+1} = a

a_{6k+2} = b

a_{6k+3} = b+(-a)

a_{6k+4} = (-a)

a_{6k+5} = (-b)

a_{6k+6} = (-b)+a


a_{n} = ( a_{n+(-1)}/a_{n+(-2)} )

a_{6k+1} = a

a_{6k+2} = b

a_{6k+3} = (b/a)

a_{6k+4} = (1/a)

a_{6k+5} = (1/b)

a_{6k+6} = (a/b)

martes, 6 de octubre de 2020

enters ciclotomics y classes de equivalencia

f(mk+n) = e^{(n/m)·pi·i} ==>

x^{(m/n)}+1 = 0 ==>

[Ey][ y€Z & (yx)^{(m/n)}+y^{(m/n)} = 0 ]

( (mk+n)·e^{(n/m)·pi·i·} )^{(m/n)}+(mk+n)^{(m/n)} = 0


f(mk+n) = a^{(n/m)}·e^{(n/m)·pi·i} ==>

x^{(m/n)}+a = 0 ==>

[Ey][ y€Z & (yx)^{(m/n)}+ay^{(m/n)} = 0 ]

( (mk+n)·(a^{(n/m)}·e^{(n/m)·pi·i·}) )^{(m/n)}+a·(mk+n)^{(m/n)} = 0


f(mk+n) = a^{(n/m)}·e^{(n/m)·pi·i} ==>

x^{(m/n)}+a = 0 ==>

f(pk+q) = b^{(q/p)}·e^{(q/p)·pi·i} ==>

z^{(p/q)}+b = 0 ==>

[Ey][ y€Z & (yx)^{(m/n)}+ay^{(m/n)}+(yz)^{(p/q)}+by^{(p/q)} = 0 ]

( (mk+n)·(pk+q)·(a^{(n/m)}·e^{(n/m)·pi·i·}) )^{(m/n)}+a·( (mk+n)·(pk+q) )^{(m/n)}+...

... ( (mk+n)·(pk+q)·(b^{(q/p)}·e^{(q/p)·pi·i·}) )^{(p/q)}+b·( (mk+n)·(pk+q) )^{(p/q)} = 0


f(mk+n) = e^{(n/m)·pi·i} ==>

x^{(m/n)}+1 = 0 ==>

[Ey][Ez][ ( y€Z & z€Z ) & (yzx)^{(m/n)}+(yz)^{(m/n)} = 0 ]

( (mk+n)·(mk+n)·e^{(n/m)·pi·i·} )^{(m/n)}+( (mk+n)·(mk+n) )^{(m/n)} = 0

English-Castellán [ nombres con a y o ]

bañ <==> baño

bañe <==> baña


bark <==> barco

barke <==> barca


vas <==> vaso

vase <==> vasa


cap <==> capo

cape <==> capa


car <==> carro

care <==> carra


fang <==> fango

fange <==> fanga


gang <==> gango

gange <==> ganga


gat <==> gato

gate <==> gata


mark <==> marco

marke <==> marca


pans <==> panso

panse <==> pansa


pas <==> paso

pase <==> pasa


past <==> pasto

paste <==> pasta


pat <==> pato

pate <==> pata


plat <==> plato

plate <==> plata


tang <==> tango

tange <==> tanga


trank <==> tranco

tranke <==> tranca


bar <==> barro

bare <==> barra


gas <==> gaso

gase <==> gasa


baser <==> base

carner <==> carne

claser <==> clase

parker <==> parque

paser <==> pase

tanker <==> tanque

trancer <==> trance

laser <==> lase

transfer <==> transfe


corn <==> cuerno

corp <==> cuerpo

fork <==> fuerco

fort <==> fuerto

pork <==> puerco

port <==> puerto

sport <==> espuerto

tork <==> tuerco

forz <==> fuerzo

sforz <==> esfuerzo

català-castellán [ molper-morper ] y [ molpre-morpre ]

castellán:

molper <==> morper

muelpo <==> muerpo

muelpes <==> muerpes

muelpe <==> muerpe


castalà:

molpre <==> morpre

molpû <==> morpû

molps <==> morps

molp <==> morp

català-castellán [ moler-morir ] y [ moldre-mordre ]

castellán:

moler <==> morir

muelo <==> muero

mueles <==> mueres

muele <==> muere


molemos <==> morimos

moléis <==> moríuos

muelen <==> mueren


català:

moldre <==> mordre

molc <==> morc

mols <==> mors

mol <==> mor


molim <==> morim

moliu <==> moriu

molen <==> moren


ha molt <==> ha mort


català: <==> castellán:

moltu <==> mucho

moltus <==> muchos

molta <==> mucha

moltes <==> muchas


català: <==> castellán:

pocu <==> poco

pocus <==> pocos

poca <==> poca

poques <==> pocas

lunes, 5 de octubre de 2020

hyper-espai

producte = n

m·( d_{t}[x]/( 1+(-1)·(d_{t}[x]^{2}/(nc)^{2}) )^{(1/2)} ) = p

m·( d_{tt}^{2}[x]/( 1+(-1)·(d_{t}[x]^{2}/(nc)^{2}) )^{(3/2)} ) = F

m·(nc)^{2}·( 1/( 1+(-1)·(d_{t}[x]^{2}/(nc)^{2}) )^{(1/2)} ) = E


d_{t}[x] = ( 1+(-1)( (m·(nc)^{2})/E ) )^{(1/2)}·(nc)

x(t) = ( 1+(-1)( (m·(nc)^{2})/E ) )^{(1/2)}·(nc)·t


energía en repós:

E_{0} = m·(nc)^{2}


u(x,y,z,ct) = (1/3)·( x^{2}+y^{2}+z^{2} )+(-1)·((nc)·t)^{2}

d_{xx}^{2}[u(x,y,z,ct)]+d_{yy}^{2}[u(x,y,z,ct)]+d_{zz}^{2}[u(x,y,z,ct)] = ...

... (-1)·( 1/n^{2} )·d_{(ct)(ct)}^{2}[u(x,y,z,ct)] = ...

... (-1)·( 1/(nc)^{2} )·d_{tt}^{2}[u(x,y,z,ct)]


(nc)·t = b·( (nc)·t+u·t )

(nc)·t = b·( (nc)·t+(-u)·t )


(nc)^{2}·t^{2} = b^{2}·( (nc)^{2}·t^{2}+(-1)·u^{2}·t^{2} )

(nc)^{2} = b^{2}·( (nc)^{2}+(-1)·u^{2} )

b^{2} = ( 1/(1+(-1)(u^{2}/(nc)^{2})) )

b = ( 1/(1+(-1)(u^{2}/(nc)^{2}))^{(1/2)} )

domingo, 4 de octubre de 2020

rombo unitari

f(x) = 1+x

f(x) = 1+(-x)

f(x) = (-1)+x

f(x) = (-1)+(-x)


x = ( cos(t) )^{2} & y = ( sin(t) )^{2}

x = ( i·cos(t) )^{2} & y = ( sin(t) )^{2}

x = ( cos(t) )^{2} & y = ( i·sin(t) )^{2}

x = ( i·cos(t) )^{2} & y = ( i·sin(t) )^{2}

stehed-English [ of ther-it that ]

Ish snofest ther shit-hed of ther-it that fehmed yu.

yu snofest ther shit-hed of ther-it that fehmed Ish.


Ish snofest ein rosed of ther-it that fehmed yu.

yu snofest ein rosed of ther-it that fehmed Ish.


Ish not fehmest ein coment of ther-it that spehned yu.

yu not fehmest ein coment of ther-it that spehned Ish.


wires gehest to ther barish, to nehmest ein cafi?

wies gow to the bar, to take a cofi?


wires gehest to ther parkish, to fehmest ein cigarret of hemp-lois?

wies gow to the park, to make a cigarret of hemp-lois?


Not gehest to ther parkish becose ein porkish gehed to ther parkish.

Not gow to the park becose a pork gowed to the park.