lunes, 8 de mayo de 2023

física y geo-física y criterio-de-stolz y física-del-lavabo y morfosintaxis y arte-matemático

Principio: [ de inducción magnética diferencial ]

d[J(x,t)] = k·(1/r)^{3}·d_{t}[q(t)]·d[x] 

Principio: [ de inducción eléctrica diferencial ]

d[E(x,t)] = k·(1/r)^{3}·q(t)·d[x]

Ley:

Si ( d[J(x,t)] = k·(1/r)^{3}·d_{t}[q]·d[x] & d_{tt}^{2}[q] = 0 ) ==> ...

... J(r,t) = 2pi·k·(1/r)^{2}·d_{t}[q] & E(r,t) = 2pi·k·(1/r)^{2}·d_{t}[q]·t

Ley:

Si ( d[J(x,t)] = k·(1/r)^{3}·d_{t}[q]·d[x] & d_{t}[q] = (q/t) ) ==> ...

... J(r,t) = 2pi·k·(1/r)^{2}·(q/t) & E(r,t) = 2pi·k·(1/r)^{2}·q·ln(t)

Ley:

Si ( R^{2}+d^{2} = r^{2} & d[J(x,t)] = 2k·(1/r)^{3}·cos(s)·d_{t}[q]·d[x] & d_{tt}^{2}[q] = 0 ) ==> ...

... J(R,t) = 4pi·Rd·k·(1/r)^{4}·d_{t}[q] & E(R,t) = 4pi·Rd·k·(1/r)^{4}·d_{t}[q]·t

Ley:

Si ( R^{2}+d^{2} = r^{2} & d[J(x,t)] = 2k·(1/r)^{3}·cos(s)·d_{t}[q]·d[x] & d_{t}[q] = (q/t) ) ==> ...

... J(R,t) = 4pi·Rd·k·(1/r)^{4}·(q/t) & E(R,t) = 4pi·Rd·k·(1/r)^{4}·q·ln(t)


Geo-física:

Principio: [ de fuerza de des-inducción magnética = relámpago de nube ]

F(x) = d_{t}[p]·d_{t}[q]·k·( 1/(2pi·x) )·(1/a)

Principio: [ de fuerza de des-inducción eléctrica = relámpago de tierra ]

F(x) = d_{t}[p]·q(t)·k·( 1/(2pi·x) )·(1/v)

Ley:

m·d_{tt}^{2}[x] = d_{t}[p]·d_{t}[q]·k·( 1/(2pi·x) )·(1/a)

[Eu][ E = hu ]

[Eu][ x(t) = int[ Anti-pow[2]-[o(t)o]-ln( ...

... int[ d_{t}[p] ]d[t] [o(t)o]·int[ d_{t}[q] ]d[t] [o(t)o] (k/m)·(1/pi)·(1/a)·u^{2}·t ...

... ) ]d[t] ]

Ley:

m·d_{tt}^{2}[x] = d_{t}[p]·q(t)·k·( 1/(2pi·x) )·(1/v)

[Eu][ E = hu ]

[Eu][ x(t) = int[ Anti-pow[2]-[o(t)o]-ln( ...

... int[ d_{t}[p] ]d[t] [o(t)o]·int[ q(t) ]d[t] [o(t)o] (k/m)·(1/pi)·(1/v)·u^{2}·t ...

... ) ]d[t] ]

Teorema:

y^{n} [o(t)o] ln(y) = (1/t)·x^{n}

y = Anti-pow[n]-[o(t)o]-ln( (1/t)·x^{n} )

Ley: [ para-relámpagos de avión ]

bx = d_{t}[p]·d_{t}[q]·k·( 1/(2pi·x) )·(1/a)

x = ( (1/b)·d_{t}[p]·d_{t}[q]·k·( 1/(2pi) )·(1/a) )^{(1/2)}

Ley:[ para-relámpagos de tierra ]

bx = d_{t}[p]·q(t)·k·( 1/(2pi·x) )·(1/v)

x = ( (1/b)·d_{t}[p]·q(t)·k·( 1/(2pi) )·(1/v) )^{(1/2)}

Principio: [ de tormenta tropical ]

E(x) = k·(P/g)·( sin(ax)/(ax) )

B(x) = k·(P/g)·( (cos(ax)+(-1))/(ax) )

Ley:

E(0) = k·(P/g)

B(0) = 0

Ley:

div[E(x)] = k·(P/g)·a·( ( cos(ax)/(ax) )+(-1)·( sin(ax)/(ax)^{2} ) )

div[B(x)] = k·(P/g)·a·( ( sin(ax)/(ax) )+(-1)·( cos(ax)/(ax)^{2} )+( 1/(ax)^{2} ) )

Ley:

div[E(0)] = 0

div[B(0)] = k·(P/g)·a·(3/2)


Teorema: [ de stolz ]

Si lim[n = oo][ ( (a_{n+1}+(-1)·a_{n})/(b_{n+1}+(-1)·b_{n}) ) ] = l ==> ...

... lim[n = oo][ (a_{n}/b_{n}) ] = l

Demostración:

(a_{1}/b_{n+1})+( (b_{n+1}+(-1)·b_{1})/b_{n+1} )·(l+(-s)) < (a_{n+1}/b_{n+1}) < ...

... ( (b_{n+1}+(-1)·b_{1})/b_{n+1} )·(l+s)+(a_{1}/b_{n+1})

Teorema:

lim[n = oo][ ( (1^{k}+...(n)...+n^{k})/n^{k+1} ) ] = ( 1/(k+1) )

Demostración: [ por Stolz ]

lim[n = oo][ ( (n+1)^{k}/( (k+1)·n^{k}+...(k+1)...+1 ) ) ] = ( 1/(k+1) )

Teorema:

lim[n = oo][ ( 1^{k}+...(n)...+n^{k} )^{(1/n)} ] = 1

Demostración: [ por Stolz ]

lim[n = oo][ e^{( ln(1^{k}+...(n)...+n^{k})/n )} ] = ...

... lim[n = oo][ e^{ln(1^{k}+...(n)...+n^{k}+(n+1)^{k})+(-1)·ln(1^{k}+...(n)...+n^{k})} ] = ...

... lim[n = oo][ ( 1+( (n+1)^{k}/(1^{k}+...(n)...+n^{k}) ) ) ] = ... 

... lim[n = oo][ ( 1+(k+1)·( (n+1)^{k}/n^{k+1} ) ) ] = 1

Teorema:

lim[n = oo][ ( (1+(1/n))! )^{(1/n)} ] = 1

Demostración: [ por Stolz ]

lim[n = oo][ e^{( ln((1+(1/n))!)/n )} ] = ...

... lim[n = oo][ e^{( ln(2·...·(1+(1/n))·( 1+(1/(n+1)) ))+(-1)·ln(2·...·(1+(1/n))) )} ] = ...

... lim[n = oo][ ( 1+( 1/(n+1) ) ) ] = 1

Teorema:

lim[n = oo][ ( n^{n}/n! )^{(1/n)} ] = e

Demostración: [ por Stolz ]

lim[n = oo][ e^{( ln(n^{n}/n!)/n )} ] = ...

... lim[n = oo][ e^{( ln( ((n+1)^{n+1}·n!)/((n+1)!·n^{n}) )} ] = ...

... lim[n = oo][ ( 1+(1/n) )^{n} ] = e


Se vaitxnatzi-ten-dut-za-tek a extingitzi-ten-dut-zare-dut la gentotzak,

que no creurtu-ten-dut-za-tek en infiel-koaks,

perque no tinketzen-ten-dut-zen-tek següentotzok.

No se vaitxnatzi-ten-dut-za-tek a extingitzi-ten-dut-zare-dut la gentotzak,

que creurtu-ten-dut-za-tek en infiel-koaks,

perque tinketzen-ten-dut-zen-tek següentotzok.


És-de-tek una merdotzak,

no tinketzen-ten-dut-zare-dut següentotzok,

perque te morketzen-ten-dut-zes-tek para semper-nek.

No és-de-tek una merdotzak,

tinketzen-ten-dut-zare-dut següentotzok,

perque no te morketzen-ten-dut-zes-tek para semper-nek.


Ley: [ de colchoneta elástica ]

Si ( R^{2}+d^{2} = r^{2} & m·d_{tt}^{2}[d] = (-p)·k·4pi·Rd·(1/r)^{4}·q ) ==>

d(t) = he^{(1/r)^{2}·(4pi)^{(1/2)}·( (pqk·R)/m )^{(1/2)}·it}

Ley: [ de colchoneta de bombero ]

Si ( R^{2}+d^{2} = r^{2} & m·d_{tt}^{2}[d] = int[ (-p)·k·4pi·Rd·(1/r)^{4}·d_{t}[q] ]d[t] ) ==>

d(t) = he^{(1/r)^{(4/3)}·(4pi)^{(1/3)}·( (pk·R)/m )^{(1/3)}·d_{t}[q]^{(1/3)}·(-t)}


Ley: [ de váter ]

m·d_{tt}^{2}[z] = P·( x^{2}+y^{2} )

z(t) = (1/m)·P·( x^{2}+y^{2} )·(1/2)·t^{2}

Ley: [ de escobilla del váter ]

m·d_{tt}^{2}[z]+kz = P·( x^{2}+y^{2} )

z(t) = he^{(k/m)^{(1/2)}·it}+(1/k)·P·( x^{2}+y^{2} )

Ley: [ de ducha ]

m·d_{tt}^{2}[z] = (-P)·( u^{2}+v^{2} )

z(t) = (1/m)·(-P)·( u^{2}+v^{2} )·(1/2)·t^{2}

Ley: [ de esponja de ducha ]

m·d_{tt}^{2}[z]+kz = (-P)·( u^{2}+v^{2} )

z(t) = he^{(k/m)^{(1/2)}·it}+(1/k)·(-P)·( u^{2}+v^{2} )

Ley: [ de pica de manos ]

m·d_{tt}^{2}[z] = P·( x^{2}+y^{2} )+(-P)·( u^{2}+v^{2} )

z(t) = (1/m)·( P·( x^{2}+y^{2} )+(-P)·( u^{2}+v^{2} ) )·(1/2)·t^{2}

Ley: [ de eyector de jabón de manos ]

m·d_{tt}^{2}[z]+kz = P·( x^{2}+y^{2} )+(-P)·( u^{2}+v^{2} )

z(t) = he^{(k/m)^{(1/2)}·it}+(1/k)·( P·( x^{2}+y^{2} )+(-P)·( u^{2}+v^{2} ) )


Ley: [ de insecticida ]

m·d_{tt}^{2}[z] = a·( |x|+|y| )

z(t) = (1/m)·a·( |x|+|y| )·(1/2)·t^{2}

Ley: [ de limpiador de espray ]

m·d_{tt}^{2}[z]+kz = a·( |x|+|y| )

z(t) = he^{(k/m)^{(1/2)}·it}+(1/k)·a·( |x|+|y| )

Ley: [ de desodorante ]

m·d_{tt}^{2}[z] = (-a)·( |x|+|y| )

z(t) = (1/m)·(-a)·( |x|+|y| )·(1/2)·t^{2}

Ley: [ de desodorante de bola ]

m·d_{tt}^{2}[z]+kz = (-a)·( |x|+|y| )

z(t) = he^{(k/m)^{(1/2)}·it}+(1/k)·(-a)·( |x|+|y| )

Ley: [ de limpiador azul de váter ]

m·d_{tt}^{2}[z]= a·( |x|+|y| )+P·( x^{2}+y^{2} )

z(t) = (1/m)·( a·( |x|+|y| )+P·( x^{2}+y^{2} ) )·(1/2)·t^{2}

Ley: [ de ambientador de váter ]

m·d_{tt}^{2}[z]+kz = a·( |x|+|y| )+P·( x^{2}+y^{2} )

z(t) = he^{(k/m)^{(1/2)}·it}+(1/k)·( a·( |x|+|y| )+P·( x^{2}+y^{2} ) )


Ley: [ no cometiendo adulterio ]

z(x) = < (1/n),2e^{ix},2e^{(-1)·ix},(n/4) > es un placer

Si n >] 5 ==> Se hace el SIDA en ser: (n/4) > 1

Ley: [ cometiendo adulterio ]

z(x) = < (-n),2e^{ix},2e^{(-1)·ix},n+(-4)·cos(x) > es un dolor

Si n >] 4 ==> Se hace el SIDA en ser: [Ax][ x € [0,(pi/2)]_{R} ==> n+(-4)·cos(x) >] 0 ]


En el Paraíso se tienen 72 mujeres de las cuales 20 son vírgenes:

En el Paraíso se tienen 9 hombres de los cuales 5 son vírgenes:

( 1/(5+4) )+( (4+4)/(5+4) ) = (1/9)+(8/9) = (8/72)+(8/9) = 1

( 1/(9+(-4)) )+( (8+(-4))/(9+(-4)) ) = (1/5)+(4/5) = (4/20)+(4/5) = 1


Mofosintaxis:

el [o] la <==> [A$1$ [x] ][ [x] es nombre ]

un [o] una <==> [E$1$ [x] ][ [x] es nombre ]


los [o] las <==> [A$...$ [x] ][ [x] es nombre ]

unos [o] unas <==> [E$...$ [x] ][ [x] es nombre ]


los n [o] las n <==> [A$n$ [x] ][ [x] es nombre ]

unos n [o] unas n <==> [E$n$ [x] ][ [x] es nombre ]


el primer [o] la primera <==> [A$1$1$ [x] ][ [x] es nombre ]

un primer [o] una primera <==> [E$1$1$ [x] ][ [x] es nombre ]


los primeros [o] las primeras <==> [A$...$1$ [x] ][ [x] es nombre ]

unos primeros [o] unas primeras <==> [E$...$1$ [x] ][ [x] es nombre ]


el n-zh [o] la n-zh <==> [A$1$n$ [x] ][ [x] es nombre ]

un n-zh [o] una n-zh <==> [E$1$n$ [x] ][ [x] es nombre ]


los n-zh [o] las n-zh <==> [A$...$n$ [x] ][ [x] es nombre ]

unos n-zh [o] unas n-zh <==> [E$...$n$ [x] ][ [x] es nombre ]


Euskera:

Parlatzi-ten-dut-zû-tek aqueteshek parlatzi-koak,

de askatatsuna-tat-koashek.

Astur-Cántabro:

Parlatzi-ten-dush-kû-tek aqueteshek parlatzi-koaikek,

de askatatsorum-tat-koashek.


Americanek:

Ye parle ye-de-mek celuiçí-pleshek idiomotzak de libertatsunek.

Parlû-tek celuiçí-pleshek idiomotzak de libertatsunek.

Parleshkû-tek celuiçí-pleshek idiomotzak de libertatsunek.

Parletxkû-tek celuiçí-pleshek idiomotzak de libertatsunek.


La meva trancotzak está-de-tek ur-duri-blek.

La meva trancotzak está-de-tek ur-blandi-blek.

La meva trancot-çuá está-de-puá ur-duri-druá.

La meva trancot-çuá está-de-puá ur-blandi-druá.


Parlatzi-ten-dut-zû-tek algunoskotzak gauza-koak de Euskera.

No parlatzi-ten-dut-zû-tek ningunoskotzak gauza-koak de Euskera.


Reino del sur de Gondor

Parlû

Reino del norte de Anor:

Parlû-tek

Rohan:

Parlû-puá


Arte:

[At][ t >] 0 ==> [En][ sum[k = 1]-[n][ ( k^{(-1)+t} ) ] = O( (n+1)^{t} ) ] ]

[At][ t >] 0 ==> [En][ sum[k = 1]-[n+1][ ( (1/(k+1))^{1+t} ) ] = O( (1/n)^{t} ) ] ]

Exposición:

n = 1

f(k) = n

k^{(-1)+t} = ( f(k) )^{(-1)+t} = n^{(-1)+t}

sum[k = 1]-[n][ ( k^{(-1)+t} ) ] = sum[k = 1]-[n][ ( n^{(-1)+t} ) ] = n·n^{(-1)+t} = ...

... n^{1+(-1)+t} = n^{0+t} = n^{t}

0 [< ( n/(n+1) )^{t} = ( n^{t}/(n+1)^{t} ) = ( n/(n+1) )^{t} < 1


Arte: [ de Vinogradov ]

[At][ t >] 0 ==> [En][ sum[k = 1]-[n][ ( k^{(-1)+t} ) ] = O( ( e^{n} )^{( (p+1)/p )·t} ) ] ]

[At][ t >] 0 ==> [En][ sum[k = 1]-[n+1][ ( ( 1/(k+1) )^{1+t} ) ] = O( ( 1/ln(n+1) )^{( p/(p+1) )·t} ) ] ]

Exposición:

n = 1

f(k) = n

n^{( p/(p+1) )} [< n [< e^{n}

(n+1)^{( (p+1)/p )} >] n+1 >] ln(n+1)

Arte:

[At][ t >] 0 ==> ...

... [En][ sum[k = 1]-[n+1][ ( ( (k+1)·ln(k+1) )^{(-1)+t} ) ] = O( (n+1)^{2t}·( 1/ln(n+1) )  ) ] ]

[At][ t >] 0 ==> ...

... [En][ sum[k = 1]-[n][ ( ( 1/(k·e^{k}) )^{1+t} ) ] = O( (1/n)^{2t}·e^{n} ) ] ]

Exposición:

n = 1

f(k) = n