viernes, 13 de septiembre de 2024

integrales-impropias y probabilidades y olores y mecánica-estadística y economía y álgebra-lineal y sexualidad

Teorema:

Si lim[x = 0][ g(x) ] = 0^{n} ==> ...

... lim[x = 0][ ( f(x) [o(x)o] g(x) ) ] = lim[x = 0][ ( f(x) [o(x)o] d_{x}[g(x)] ) ]

Si lim[x = 0][ g(x) ] = 0^{n} ==> ...

... lim[x = 0][ ( f(x) /o(x)o/ g(x) ) ] = lim[x = 0][ ( f(x) /o(x)o/ d_{x}[g(x)] ) ]

Demostración:

lim[x = 0][ d_{x}[g(x)] ] = ...

... lim[h = 0][ (1/h)·( g(x+h)+(-1)·g(x) ) = lim[h = 0][ (1/h)·0^{n+1} ] = 0^{n} = ...

... lim[x = 0][ g(x) ]

Teorema:

Si lim[x = oo][ g(x) ] = oo^{n} ==> ...

... lim[x = oo][ ( f(x) [o(x)o] g(x) ) ] = lim[x = oo][ ( f(x) [o(x)o] d_{x}[g(x)] ) ]

Si lim[x = oo][ g(x) ] = oo^{n} ==> ...

... lim[x = oo][ ( f(x) /o(x)o/ g(x) ) ] = lim[x = oo][ ( f(x) /o(x)o/ d_{x}[g(x)] ) ]

Demostración:

lim[x = oo][ d_{x}[g(x)] ] = ...

... lim[h = 0][ (1/h)·( g(x+h)+(-1)·g(x) ) = lim[h = 0][ (1/h)·oo^{n+(-1)} ] = oo^{n} = ...

... lim[x = oo][ g(x) ]


Teorema:

Sea n >] 1 ==>

int[x = 0]-[oo][ e^{(-1)·x^{n}} ]d[x] = (1/n!)

Demostración:

lim[x = oo][ (-1)·( ( ln(2)/x^{n} ) [o(x)o] ( x /o(x)o/ n!·x ) ) ] = (-1)·(1/n!)·ln(2)·0^{n}

Teorema:

Sea n >] 1 ==>

int[x = 0]-[oo][ nx^{2n+(-1)}·e^{(-1)·x^{n}} ]d[x] = n!

Demostración:

lim[x = oo][ (-1)·( ( ln(2)/x^{n} ) [o(x)o] n!·x ) ] = (-1)·n!·ln(2)·0^{n}


Examen:

Teorema:

int[x = 0]-[oo][ d_{x}[ (1/x)·( ln(x+1)+x ) ]·x^{n} ]d[x] = ( ln(2)+1 )·n!

Teorema:

int[x = 0]-[oo][ d_{x}[ (1/x)·( x+e^{x}+(-1) ) ]·x^{n} ]d[x] = ( 1/ln(2) )·( ln(2)+1 )·n!


Definición: [ de la función Gamma ]

H(s) = int[x = 0]-[oo][ x^{s}·e^{(-x)} ]d[x]

Definición:

sum[k = 1]-[n][ f(k) ] = ( f(n) )?

1? = 1

Teorema:

( f(n)·g(n) )? = ( f(n) )? [o] ( g(n) )?

Demostración:

( f(n)·g(n) )? = ...

... sum[k = 1]-[n][ f(k)·g(k) ] = sum[k = 1]-[n][ f(k) ] [o] sum[k = 1]-[n][ g(k) ] = ( f(n) )? [o] ( g(n) )?

Teorema:

( f_{1}(n)·...(m)...·f_{m}(n) )? = ( f_{1}(n) )? [o] ...(m)... [o] ( f_{m}(n) )?

Demostración:

( ( f_{1}(n)·...(m)...·f_{m}(n) )·f_{m+1}(n) )? = ...

... ( f_{1}(n)·...(m)...·f_{m}(n) )? [o] ( f_{m+1}(k) )? = ...

... ( ( f_{1}(n) )? [o] ...(m)... [o] ( f_{m}(k) )? ) [o] ( f_{m+1}(k) )?

Teorema:

( f(n)+g(n) )? = ( f(n) )?+( g(n) )?

( w·f(n) )? = w·( f(n) )?


Teorema:

Sea k >] 0 ==>

H(k) = int[x = 0]-[oo][ x^{k}·e^{(-1)·x} ]d[x] = k!

Demostración:

lim[x = oo][ (-1)·( ( ln(2)/x ) [o(x)o] k!·x ) ] = (-1)·k!·ln(2)·0

Teorema: [ de distribución ]

( 1 /o/ (n!)? ) [o] sum[k = 0]-[n][ H(k) ] = 1

Teorema: [ de esperanza ]

( 1 /o/ (n!)? ) [o] sum[k = 0]-[n][ H(k+1) ] = (n+1)?

Demostración:

( 1 /o/ (n!)? ) [o] sum[k = 0]-[n][ H(k+1) ] = ( 1 /o/ (n!)? ) [o] ( (n+1)! )? = ...

... ( 1 /o/ (n!)? ) [o] ( n!·(n+1) )? = ( 1 /o/ (n!)? ) [o] (n!)? [o] (n+1)? = (n+1)?

Anexo:

(1 /o/ 1)·1 = 1

(1 /o/ (1+1)) [o] (1+2) = 1+2

(1 /o/ (1+1+2)) [o] (1+2+6) = 1+2+3

(1 /o/ (1+1+2+6)) [o] (1+2+6+24) = 1+2+3+4


Teorema:

Sea k >] 1 ==>

H(1/k) = int[x = 0]-[oo][ x^{(1/k)}·e^{(-1)·x} ]d[x] = k

Demostración:

lim[y = oo^{(1/k)}][ (-k)·( ( ln(2)/y^{k} ) [o(y)o] ( k!·y /o(y)o/ k!·y ) ) ] = (-k)·ln(2)·0

Teorema:

Sea k >] 1 ==>

H((1/k)+1) = int[x = 0]-[oo][ x^{(1/k)+1}·e^{(-1)·x} ]d[x] = 2^{k}·(2k+(-p))!·k

Demostración:

lim[y = oo^{(1/k)}][ (-k)·( ( ln(2)/y^{k} ) [o(y)o] ( 2^{k}·k!·(2k+(-p))!·y /o(y)o/ k!·y ) ) ] = ...

... (-k)·2^{k}·(2k+(-p))!·ln(2)·0

Teorema: [ de distribución ]

( 1 /o/ n? ) [o] sum[k = 1]-[n][ H(1/k) ] = 1

Teorema: [ de esperanza ]

( 1 /o/ n? ) [o] sum[k = 1]-[n][ H((1/k)+1) ] ) = ( 2^{n} )? [o] ( (2n+(-p))! )?

Demostración:

( 1 /o/ n? ) [o] sum[k = 1]-[n][ H((1/k)+1) ] = ...

... ( 1 /o/ n? ) [o] ( 2^{n}·(2n+(-p))!·n )? = ...

... ( 1 /o/ n? ) [o] ( 2^{n} )? [o] ( (2n+(-p))! )? [o] n? = ( 2^{n} )? [o] ( (2n+(-p))! )?

Anexo:

(1 /o/ 1) [o] (1·2)

(1 /o/ (1+2)) [o] (1·2+2·3·4)

(1 /o/ (1+2+3)) [o] (1·2+2·3·4+3·3·5·8)


Teorema:

u(n) = int[x = 0]-[oo][ d_{x}[ (1/x)·( x+( 1/(1+(-x)) )+(-1) ) ]·x^{n} ]d[x] = n!+1

v(n) = int[x = 0]-[oo][ d_{x}[ (1/x)·( x+( 1/(1+(-x)) )+(-1) ) ]·x^{n} ]d[x] = n!+(-1)

Teorema: [ de distribución ]

( 1/(2n!) )·( u(n)+v(n) ) = 1

Teorema: [ de esperanza ]

( 1/(2n!) )·( u(n+1)+v(n+1) ) = (n+1)

Anexo:

3! = (2+3) = (0.05)€

4! = (2+3)·4 = (0.20)€

5! = (2+3)·4+5 = (0.25)€

6! = (2+3)·4+5·6 = (0.50)€

Teorema:

Si ( P(n) = ( 1/(2n!) )·u(n) & Q(n) = ( 1/(2n!) )·v(n) ) ==>

P(3) = (7/12) & Q(3) = (5/12)

P(4) = (25/48) & Q(4) = (23/48)

P(5) = (121/240) & Q(5) = (119/240)

P(6) = (721/1440) & Q(6) = (719/1440)


El himno de Cáteldor:

Cáteldor tot triomfant,

torna a ser ric y complet.

Enderrera aquesta gent,

tant ufana y tant superva.


Bon cop de faç.

Bon cop de falç,

defensors de la terra.

Bon cop de falç.


Se va construyendo el tercer raíl desde Sant Vicent de Calders hasta Tarragona,,

Se puede ir o vatxnar con trenes de carga desde Vilafranca de Penedés hasta Tarragona,

para salir hacia El País Valenciano.


Maquetas de tren de Habitación:

Ley:

Estación continua paralela.

Túnel-Puente-Túnel

Estación continua paralela.

Puente-Túnel-Puente

Ley:

Estación terminal perpendicular.

Túnel-Puente-Túnel

Estación continua perpendicular.

Puente-Túnel-Puente


Principio: [ de Olores ]

Perfumante [o] Sudosa

Ambientativa [o] Fétida

Desodorante [o] Humosa

Desértica [o] Húmeda


Principio: [ de olores ]

Carne-podrida [o] Tierra [o] Verdura-podrida

Pescado-podrido [o] Mar [o] Alga-podrida

Carne [o] Verdura

Pescado [o] Alga


Teorema:

M(k) = int[x = 0]-[oo][ d_{x}[ ln( k+( x/(x+1) ) ) ] ]d[x]+ln(k) = ln(k+1)

Teorema:

(n+1)? [o] sum[k = 0]-[n][ d_{k...k}^{m}[M(k)] ] = (-1)^{m+1}·(m+(-1))!·( ( 1/(n+1) )^{m+(-1)} )?

Demostración:

d_{x}[ (-1)^{m+1}·(m+(-1))!·(1/x)^{m} ] = (-1)^{m+1}·(m+(-1))!·(-m)·(1/x)^{m+1} = ...

... (-1)^{(m+1)+1}·m!·(1/x)^{m+1}

(n+1)? [o] sum[k = 0]-[n][ d_{k...k}^{m}[M(k)] ] = ...

... (n+1)? [o] sum[k = 0]-[n][ (-1)^{m+1}·(m+(-1))!·( 1/(k+1) )^{m} ] = ...

... (n+1)? [o] ( (-1)^{m+1}·(m+(-1))!·( 1/(n+1) )^{m} )? = ...

... (-1)^{m+1}·(m+(-1))!·( (n+1)? [o] ( ( 1/(n+1) )^{m} )? = ...

... (-1)^{m+1}·(m+(-1))!·( ( 1/(n+1) )^{m+(-1)} )?


Teorema:

M(k,n) = int[x = 0]-[oo][ d_{x}[ e^{kn·( x/(x+1) )} ] ]d[x]+1 = e^{kn}

Teorema:

( 1 /o/ ( e^{n^{2}} )? ) [o] sum[k = 1]-[n][ d_{n...n}^{m}[M(k,n)] ] ) = ( n^{m} )?

Demostración:

d_{x}[ k^{m}·e^{kx} ] = k^{m+1}·e^{kx}

( 1 /o/ ( e^{n^{2}} )? ) [o] sum[k = 1]-[n][ d_{n...n}^{m}[M(k,n)] ] = ...

... ( 1 /o/ ( e^{n^{2}} )? ) [o] sum[k = 1]-[n][ k^{m}·e^{kn} ] = ...

... ( 1 /o/ ( e^{n^{2}} )? ) [o] ( n^{m}·e^{n^{2}} )? = ...

... ( 1 /o/ ( e^{n^{2}} )? ) [o] ( e^{n^{2}}·n^{m} )? = ...

... ( ( 1 /o/ ( e^{n^{2}} )? ) [o] ( e^{n^{2}} )? [o] ( n^{m} )? ) = ( n^{m} )?


Examen:

Teorema:

M(k,n) = int[x = 0]-[oo][ d_{x}[ e^{kn·( x/(x+1) )} ] ]d[x]+1 = e^{kn}

Teorema:

( 1 /o/ ( e^{n^{2}} )? ) [o] sum[k = 1]-[n][ int-[m]-int[ M(k,n) ]d[n]...(m)...d[k] ] ) = ( (1/n)^{m} )?


Teorema:

M(k) = int[x = 0]-[oo][ d_{x}[ k+( x/(x+1) ) ] ]d[x]+k = k+1

Teorema:

( 1 /o/ (n+1)? ) [o] sum[k = 0]-[n][ int-[m]-int[ M(k) ]d[k]...(m)...d[k] ] = ( 1/(m+1)! )·( (n+1)^{m} )?

Demostración:

d_{x}[ ( 1/(m+1)! )·x^{m+1} ] = ( 1/(m+2)! )·x^{m+2}


Definición:

[ (-n) // k ] = (1/k!)·( (-n)+(-k)+1 )!

[ (-n) // 0 ] = 1

Teorema:

sum[k = 0]-[oo][ [ (-n) // k ]·p^{n}·( p+(-1) )^{k} ] = 1

Demostración:

(1+(-x))^{(-n)} = 1+sum[k = 1]-[oo][ (1/k!)·( n+k+(-1) )!·x^{k} ]

p^{(-n)} = 1+sum[k = 1]-[oo][ (1/k!)·( n+k+(-1) )!·( 1+(-p) )^{k} ]

Teorema:

sum[k = 1]-[oo][ k·[ (-n) // k ]·p^{n}·( p+(-1) )^{k} ] = (-1)·(n/p)·(p+(-1))

Demostración:

sum[k = 1]-[oo][ k·[ (-n) // k ]·p^{n}·( p+(-1) )^{k} ] = ...

... (p+(-1))·sum[k = 1]-[oo][ [ (-n) // k+(-1) ]·p^{n}·( p+(-1) )^{k+(-1)} ] = ...

... (-1)·(n/p)·(p+(-1))·sum[k = 1]-[oo][ [ (-n)+(-1) // k+(-1) ]·p^{n+1}·( p+(-1) )^{k+(-1)} ] = ...

... (-1)·(n/p)·(p+(-1))·sum[k = 1]-[oo][ [ (-1)·(n+1) // k+(-1) ]·p^{n+1}·( p+(-1) )^{k+(-1)} ] = ...

... (-1)·(n/p)·(p+(-1))

Teorema:

sum[k = 0]-[oo][ p^{k}·( 1+(-p) ) ] = 1

Teorema:

sum[k = 1]-[oo][ k·p^{k}·( 1+(-p) ) ] = p·( 1/(1+(-p)) )

Demostración:

sum[k = 1]-[oo][ k·p^{k}·( 1+(-p) ) ] = p·(1+(-p))·sum[k = 1]-[oo][ k·p^{k+(-1)} ] = ...

... p·(1+(-p))·sum[k = 1]-[oo][ d_{p}[ p^{k} ] ] = p·(1+(-p))·d_{p}[ sum[k = 1]-[oo][ p^{k} ] ] = ...

... p·(1+(-p))·d_{p}[ ( 1/(1+(-p)) ) ] = p·( 1/(1+(-p)) )


Ley:

(m/2)·(1/n)·d_{t}[x]^{2} = [ (-n) // k ]·(ut)^{n}·( (ut)+(-1) )^{k}·qgx

x(t) = (1/a)·Anti-[ ( s /o(s)o/ (1/2)·s^{2} )^{[o(s)o] (1/2)} ]-( ...

... ( (2/m)·qga )^{(1/2)}·int[ [ (-n) // k ]·(ut)^{n}·( (ut)+(-1) )^{k} ]d[t] )

Ley:

(m/2)·(1/n)·d_{t}[x]^{2} = ( 1+(-1)·(ut) )·(ut)^{k}·qgx

x(t) = (1/a)·Anti-[ ( s /o(s)o/ (1/2)·s^{2} )^{[o(s)o] (1/2)} ]-( ...

... ( (2/m)·qga )^{(1/2)}·int[ ( 1+(-1)·(ut) )·(ut)^{k} ]d[t] )


Ley:

m·d_{t}[x]^{[o(ut)o] 2} = N(t)·u·F( (1/v)·d_{t}[x] )

d_{t}[x] = ...

... v·Anti-[ ( s /o(s)o/ int[ d_{ut}[ (1/m)·N(t)·(1/v)^{2}·(1/u)·F(s) ] ]d[s] )^{[o(s)o] (1/2)} ]-(ut)

Ley:

L·d_{t}[q]^{[o(ut)o] 2} = N(t)·u·F( (1/I)·d_{t}[q] )

d_{t}[q] = ...

... I·Anti-[ ( s /o(s)o/ int[ d_{ut}[ (1/L)·N(t)·(1/I)^{2}·(1/u)·F(s) ] ]d[s] )^{[o(s)o] (1/2)} ]-(ut)


Lema: [ de bolsa estocástica lineal de audiencia ]

s = audiencia

p = precio de inversión

d_{x}[y(x,k)] = ( ln(P(k))+ln(ps) )·y(x,k)

y(x,k) = e^{( ln(P(k))+ln(ps) )·x}

y(1,k) = P(k)·ps

sum[k = 1]-[n][ P(k)·ps ] = ps

d_{x}[y(x,k)] = ( ln(P(k))+ln(p/s) )·y(x,k)

y(x,k) = e^{( ln(P(k))+ln(p/s) )·x}

y(1,k) = P(k)·(p/s)

sum[k = 1]-[n][ P(k)·(p/s) ] = (p/s)

Lema: [ de bolsa estocástica afín de audiencia ]

s = audiencia

p = precio de inversión

d_{x}[y(x,k)]+(ps+1)·y(x,k) = P(k)·(ps+1)^{2}·x

y(x,k) = P(k)·(ps+1)·( x+(-1)·( 1/(ps+1) ) )

y(1,k) = P(k)·ps

sum[k = 1]-[n][ P(k)·ps ] = ps

d_{x}[y(x,k)]+((p/s)+1)·y(x,k) = P(k)·((p/s)+1)^{2}·x

y(x,k) = P(k)·((p/s)+1)·( x+(-1)·( 1/((p/s)+1) ) )

y(1,k) = P(k)·(p/s)

sum[k = 1]-[n][ P(k)·(p/s) ] = (p/s)

Anexo:

La bolsa estocástica es de dos personas:

Uno compra en 2k+1 & vende en 2k+2.

Uno vende en 2k+1 & compra en 2k+2

Anexo:

P(k) = [ 2 // k ]·2^{(-2)}

El que compra en 2k+1 gana 2p:

Parte 1:

k = 0

n = (1/2)·p & m = 0

k = 1

n = (-1)·(1/2)·p & m = p

k = 2

n = 0 & m = (1/2)·p

Parte 2:

k = 1

n = p & m = 0

k = 2

n = (1/2)·ps & m = (1/2)·p

k = 0

n = p & m = 0

Parte 3:

k = 2

n = (1/2)·p & m = 0

k = 0

n = 0 & m = (1/2)·p

k = 1

n = p & m = (-1)·(1/2)·p


Teorema: [ de probabilidad ]

( 1/( f(n) )? )·sum[k = 1]-[n][ f(k) ] = 1

Teorema: [ de distribución ]

( 1 /o/ ( f(n) )? ) [o] sum[k = 1]-[n][ f(k) ] = 1 

Teorema: [ de esperanza ]

( 1 /o/ ( f(n) )? ) [o] sum[k = 1]-[n][ k·f(k) ] = n?

Teorema: [ de desviación ]

( 1 /o/ ( f(n) )? ) [o] sum[k = 1]-[n][ k·(k+(-1))·f(k) ] = n? [o] (n+(-1))?


Teorema:

Si f(k+p) = f(p)·f(k) ==>

( 1 /o/ ( f(n) )? ) [o] sum[k = 1]-[n][ k·f(k+p) ] = f(p)·n?

Teorema:

Si f(k+[p:a]) = f(k)·( f(p)+a ) ==>

( 1 /o/ ( f(n) )? ) [o] sum[k = 1]-[n][ k·f(k+[p:a]) ] = ( f(p)+a )·n?

Teorema:

Si f(k+p) = f(k)+f(p) ==>

( 1 /o/ ( f(n) )? ) [o] sum[k = 1]-[n][ k·f(k+p) ] = n?+( f(p) )·( ( 1 /o/ ( f(n) )? ) [o] n? )

Teorema:

Si f(k+[p:a]) = f(k)+( f(p)+a ) ==>

( 1 /o/ ( f(n) )? ) [o] sum[k = 1]-[n][ k·f(k+[p:a]) ] = n?+( f(p)+a )·( ( 1 /o/ ( f(n) )? ) [o] n? )


Definición: [ de subespacio afín ]

[Ea][ Si ( [x:a] € a+F & [y:a] € a+F ) ==> [x+y:a] € a+F ]

[Ea][ Si [x:a] € a+F ==> [wx:a] € a+F ]

Teorema:

a+F es afín <==> F es vectorial

Demostración:

[==>]

Sea ( x € F & y € F ) ==>

( [x:0] € F & [y:0] € F )

[x+y:0] € 0+F

(x+y) € F

Sea x € F ==>

[x:0] € F

[wx:0] € 0+F

wx € F

[<==]

Sea ( [x:a] € a+F & [y:a] € a+F ) ==>

x € F & y € F

(x+y) € F

[x+y:a] € a+F

Sea [x:a] € a+F ==>

x € F

wx € F

[wx:a] € a+F


Teorema:

Sea ( A un espacio vectorial & B un espacio vectorial ) ==>  

Gen(A,B) [&] Gen(A,B) = Gen(A [&] A,B [&] B)

Gen(A,B) [ || ] Gen(A,B) = Gen(A [ || ] A,B [ || ] B)

Demostración:

Gen(A,B) [&] Gen(A,B) = Gen(A,B) = Gen(A [&] A,B [&] B)

Gen(A,B) [ || ] Gen(A,B) = Gen(A,B) = Gen(A [ || ] A,B [ || ] B)


Teorema:

Sea A [=] B = Gen( A [&] B ) ==>

Si ( A es espacio vectorial & B es espacio vectorial ) ==> A [=] B es espacio vectorial

Demostración:

Sea x € A [=] B & y € A [=] B

x es combinación lineal de A [=] B & y es combinación lineal de A [=] B

( x € A [=] x € B ) & ( y € A [=] y € B )

( x € A & y € A ) [=] ( x € B & y € B )

( x & y ) son combinación lineal de A & ( x & y ) son combinación lineal de B

(x+y) € A [=] (x+y) € B

(x+y) € A [=] B

Sea x € A [=] B

x € A [=] x € B

wx € A [=] wx € B

wx € A [=] B

Teorema:

Sea A [+] B = Gen( A [ || ] B ) ==>

Si ( A es espacio vectorial & B es espacio vectorial ) ==> A [+] B es espacio vectorial

Demostración:

Sea x € A [+] B & y € A [+] B ==>

x es combinación lineal de A [+] B & y es combinación lineal de A [+] B

( x € A [+] x € B ) & ( y € A [+] y € B )

( x € A & y € A ) [+] ( x € B & y € B )

( x & y ) son combinación lineal de A & ( x & y ) son combinación lineal de B

(x+y) € A [+] (x+y) € B

(x+y) € A [+] B

Sea x € A [+] B

x € A [+] x € B

wx € A [+] wx € B

wx € A [+] B


Teorema:

Sea A = i·< 1,0>+j·< 0,1>+< a,b > & B = k·< u,v >+< p,q >

Gen( A [&] B ) = A [=] B = B

Gen( A [ || ] B ) = A [+] B = A

Demostración:

i·< 1,0>+j·< 0,1>+< a,b > = k·< u,v >+< p,q > = < x,y >+< c,d >

i = k·[u:p+(-a)] & j = k·[v:q+(-b)]

i·< 1,0>+j·< 0,1>+< a,b >+k·< u,v >+< p,q > = < x,y >+< c,d >

i = [x:c]+(-k)·[u:(-p)+(-a)] & j = [y:d]+(-k)·[v:(-q)+(-b)]


Definición: [ de afinidad ]

Sea f([x:a]) = f(x)+a ==>

[Ea][ f( [x+y:a] ) = f(x)+f(y)+a ]

[Ea][ f( [wx:a] ) = w·f(x)+a ]

Teorema:

Sea f([x:a]) = f(x)+a ==>

f(w) es afinidad <==> f(w) es lineal

Demostración:

[==>]

f(x+y) = f( [x+y:0] ) = f(x)+f(y)+0 = f(x)+f(y)

f(wx) = f( [wx:0] ) = w·f(x)+0 = w·f(x)

[<==]

f( [x+y:a] ) = f(x+y)+a = f(x)+f(y)+a

f( [wx:a] ) = f(wx)+a = w·f(x)+a


Teorema:

F(x,y) = < p,q >+( < a,b >,< c,d > ) o < [x:(-p)],[y:(-q)] > = < 0,0 >

<==>

F(x,y) = ( < a,b >,< c,d > ) o < x,y > = < 0,0 >

Demostración:

< p,q >+( < a,b >,< c,d > ) o < [x:(-p)],[y:(-q)] > = ...

... < p,q >+( < a,b >,< c,d > ) o < x,y >+< (-p),(-q) > = ...

...( < a,b >,< c,d > ) o < x,y >


Teorema:

< p,q >+( < a,a >,< a,a > ) o < x,y > = < 0,0 >

< x,y > = k·< [1:(-p)],[(-1):(-q)] > = k·< 1,(-1) >+(-1)·< p,q >

Teorema:

< p,q >+( < a,(-a) >,< (-a),a > ) o < x,y > = < 0,0 >

< x,y > = k·< [1:(-p)],[1:(-q)] > = k·< 1,1 >+(-1)·< p,q >

Teorema:

[Ew][ < p,q >+( < a,a >,< a,a > ) o < x,y > = w·< x,y > ]

< x,y > = k·< [1:(-p)],[1:(-q)] > = k·< 1,1 >+(-1)·< p,q >

Teorema:

[Ew][ < p,q >+( < a,(-a) >,< (-a),a > ) o < x,y > = w·< x,y > ]

< x,y > = k·< [1:(-p)],[(-1):(-q)] > = k·< 1,(-1) >+(-1)·< p,q >


Teorema:

< p,q >+( < a,a >,< b,b > ) o < x,y > = < 0,0 >

< x,y > = k·< [1:(-p)],[(-1):(-q)] > = k·< 1,(-1) >+(-1)·< p,q >

Teorema:

< p,q >+( < a,(-a) >,< (-b),b > ) o < x,y > = < 0,0 >

< x,y > = k·< [1:(-p)],[1:(-q)] > = k·< 1,1 >+(-1)·< p,q >

Teorema:

[Ew][ < p,q >+( < a,a >,< b,b > ) o < x,y > = w·< x,y > ]

< x,y > = k·< [a:(-p)],[b:(-q)] > = k·< a,b >+(-1)·< p,q >

Teorema:

[Ew][ < p,q >+( < a,(-a) >,< (-b),b > ) o < x,y > = w·< x,y > ]

< x,y > = k·< [(-a):(-p)],[b:(-q)] > = k·< (-a),b >+(-1)·< p,q >


Ley

Los hombres fieles de pequeños miramos pichas,

porque preferimos esa o aquella picha que la nuestra,

y preferimos que folle el otro que nosotros,

porque la tenemos pequeña.

Cuesta de entender porque se tiene la picha pequeña,

hasta que no se piensa en un chocho poco profundo,

como el de mi mujer.

Las mujeres fieles de pequeñas miran chochos,

porque prefieren ese o aquel chocho que le suyo,

y prefieren que folle otra que ellas,

porque lo tienen poco profundo.

Cuesta de entender porque se tiene el chocho poco profundo,

hasta que no se piensa en una picha pequeña,

como la de su hombre.

Ley:

Los hombres con la picha pequeña,

son asexuales y no homosexuales,

porque no pueden follar con mujeres sin puente.

Las mujeres con puente,

son asexuales y no homosexuales,

porque no pueden follar con hombres con la picha grande.


Teorema:

(1/p)^{n}·sum[k = 1]-[n][ (1/n)+p^{k}+(-1)·p^{k+(-1)} ] = 1

Teorema:

(1/p)^{n}·sum[k = 1]-[n][ kp^{k}+(-1)·kp^{k+(-1)} ) ] = ...

... (1/p)^{n}·( (n+1)·p^{n}+(-1)·( ( p^{n+1}+(-1) )/( p+(-1) ) ) )

jueves, 12 de septiembre de 2024

sucesiones-de-recurrencia y álgebra-lineal y economía y evangelio-stronikiano y mecánica-integral y análisis-matemático

Teorema:

Sea b >] 1 ==>

Si ( a_{0} = 1 & a_{n+1} = ( ba_{n} )^{(1/2)} ) ==> ...

... a_{n} es creciente & a_{n} está acotada superiormente

... lim[n = oo][ a_{n} ] = b

Demostración:

( b >] 1 <==> b^{(1/2)} < 1 ) [ Destrocter ponens ]

c < a_{n+1} = ( ba_{n} )^{(1/2)} < ( a_{n} )^{(1/2)} [< a_{n}

c >] a_{n+1} >] a_{n}

Sea lim[n = oo][ a_{n} ] = lim[n = oo][ a_{n+1} ] = x ==>

x^{2} = bx <==> x = b

Teorema:

Sea b >] 1 ==>

Si ( a_{0} = 0 & a_{n+1} = ( (b+(-1))+2a_{n} )^{(1/2)} ) ==> ...

... a_{n} es creciente & a_{n} está acotada superiormente

... lim[n = oo][ a_{n} ] = 1+b^{(1/2)}

Demostración:

( b >] 1 <==> b < 1 ) [ Destrocter ponens ]

c < a_{n+1} = ( (b+(-1))+2a_{n} )^{(1/2)} < ( 2a_{n} )^{(1/2)} [< 2a_{n} < a_{n}

c >] a_{n+1} >] a_{n}

Sea lim[n = oo][ a_{n} ] = lim[n = oo][ a_{n+1} ] = x ==>

x^{2} = ( b+(-1) )+2x <==> x = 1+b^{(1/2)}


Teorema: [ del algoritmo recurrente de la raíz cuadrada ]

Sea b >] 1 ==>

Si ( a_{0} = 1 & a_{n+1} = ( 2+( (b+(-1))/a_{n} ) ) ==> ...

... a_{n} es decreciente & a_{n} está acotada inferiormente

... lim[n = oo][ a_{n} ] = 1+b^{(1/2)}

Demostración:

1 > a_{n+1} = ( 2+( (b+(-1))/a_{n} )

a_{n} > 2a_{n}+b+(-1)

0 > a_{n}+b+(-1) >] a_{n}

( a_{n} >] 1 <==> ( 1/a_{n} ) > 1 ) [ Destrocter ponens ]

c > a_{n+1} = ( 2+( (b+(-1))/a_{n} ) ) > ( ( 2a_{n}+(b+(-1)) )/a_{n} ) >] ( 2a_{n}+(b+(-1)) > a_{n}

c [< a_{n+1} [< a_{n}

Sea lim[n = oo][ a_{n} ] = lim[n = oo][ a_{n+1} ] = x ==>

x = 2+( (b+(-1))/x ) <==> x^{2} = 2x+( b+(-1) ) <==> x = 1+b^{(1/2)}


Teorema:

Sea A = i·(x+1)+j·1 & B = k·(x+i)

A [&] B = B

Gen( A [ || ] B ) = A + B = A

Demostración:

i·(x+1)+j·1 = k·(x+i)

i = k & j = ki+(-k)

i·(x+1)+j·1+k·(x+i) = ax+b

i = a+(-k) & j = b+(-a)+k·( 1+(-i) )

Teorema:

Sea A = ix+j ==>

Si [Ea][ F(ix+j) = (ix+j)+a ] ==> ...

... Ker(F) = { ix+j : i = 0 & j = (-a) }

... A = Im(F)+Ker(F)

Demostración:

... A = (ix+j)+(a+(-a))= ix+(j+a)+(-a) = ix+(j+a)+Ker(F) = (ix+j)+a+Ker(F) = Im(F)+Ker(F)


Teorema:

Sea F(x,y) = ( < a,a >,< a,a > ) o < x,y >  ==> ...

... Ker(F) = k·< 1,(-1) >

... Si Im(F) = { < x,y > : [Ek][ F(x,y) = k·< x,y > ] } ==> A = Im(F)+Ker(F)

Demostración:

A = i·< 1,0 >+j·< 0,1 >+(-k)·< 1,(-1) >+k·< 1,(-1) > = 2k·< 1,0 >+(-k)·< 1,(-1) >+k·< 1,(-1) > = ...

... k·< 1,0 >+k·< 0,1 >+Ker(F) = k·< 1,1 >+Ker(F) = Im(F)+Ker(F)

Teorema:

Sea F(x,y) = ( < a,(-a) >,< (-a),a > ) o < x,y >  ==> ...

... Ker(F) = k·< 1,1 >

... Si Im(F) = { < x,y > : [Ek][ F(x,y) = k·< x,y > ] } ==> A = Im(F)+Ker(F)

Demostración:

A = i·< 1,0 >+j·< 0,1 >+(-k)·< 1,1 >+k·< 1,1 > = 2k·< 1,0 >+(-k)·< 1,1 >+k·< 1,1 > = ...

... k·< 1,0 >+k·< 0,(-1) >+Ker(F) = k·< 1,(-1) >+Ker(F) = Im(F)+Ker(F)


Teorema:

Sea F(x,y) = ( < a,b >,< a,b > ) o < x,y >  ==> ...

... Ker(F) = k·< b,(-a) >

... Si Im(F) = { < x,y > : [Ek][ F(x,y) = k·< x,y > ] } ==> A = Im(F)+Ker(F)

Demostración:

A = i·< 1,0 >+j·< 0,1 >+(-k)·< b,(-a) >+k·< b,(-a) > = ...

... k·(1+b)·< 1,0 >+k·(1+(-a))·< 0,1 >+(-k)·< b,(-a) >+k·< b,(-a) > = ...

... k·< 1,0 >+k·< 0,1 >+Ker(F) = k·< 1,1 >+Ker(F) = Im(F)+Ker(F)

Teorema:

Sea F(x,y) = ( < a,(-b) >,< (-a),b > ) o < x,y >  ==> ...

... Ker(F) = k·< b,a >

... Si Im(F) = { < x,y > : [Ek][ F(x,y) = k·< x,y > ] } ==> A = Im(F)+Ker(F)

Demostración:

A = i·< 1,0 >+j·< 0,1 >+(-k)·< b,a >+k·< b,a > = ...

... k·(1+b)·< 1,0 >+k·((-1)+a)·< 0,1 >+(-k)·< b,a >+k·< b,a > = ...

... k·< 1,0 >+k·< 0,(-1) >+Ker(F) = k·< 1,(-1) >+Ker(F) = Im(F)+Ker(F)


Examen de Álgebra lineal:

Teorema:

Sea F(x,y) = ( < a,a >,< b,b > ) o < x,y >  ==> ...

... Ker(F) = ?

... Si Im(F) = { < x,y > : [Ek][ F(x,y) = k·< x,y > ] } ==> A = Im(F)+Ker(F)

Demostración:

A = k·(a+b)·< a,b >+Ker(F) = Im(F)+Ker(F)

Teorema:

Sea F(x,y) = ( < a,(-a) >,< (-b),b > ) o < x,y >  ==> ...

... Ker(F) = ?

... Si Im(F) = { < x,y > : [Ek][ F(x,y) = k·< x,y > ] } ==> A = Im(F)+Ker(F)

Demostración:

A = k·(a+b)·< (-a),b >+Ker(F) = Im(F)+Ker(F)


Automatismos:

Lema:

A(x) = px+(-n)·e^{x}

A(0) = (-n)

d_{x}[A(0)] = 0 <==> p = n

B(x) = (-n)·x+p·ln(x)

B(1) = (-n)

d_{x}[B(1)] = 0 <==> p = n

Lema:

A(x) = px+(-n)·( 1+sinh(x) )

A(0) = (-n)

d_{x}[A(0)] = 0 <==> p = n

B(x) = px+(-n)·( x+cosh(x) )

B(0) = (-n)

d_{x}[B(0)] = 0 <==> p = n

Lema:

A(x) = px+(-n)·( (x+1)^{2m+1}+(-1)·2mx )

A(0) = (-n)

d_{x}[A(0)] = 0 <==> p = n

B(x) = px+(-n)·( e^{(2m+1)·x}+(-1)·2mx )

B(0) = (-n)

d_{x}[B(0)] = 0 <==> p = n


Juan:

El esclavo no es mayor que su señor,

ni el enviado mayor que el que lo envía.

El esclavo no es mayor que el enviado,

ni el señor mayor que el que lo envía.

Ley:

No se molesta a fieles con esclavos infieles,

porque el esclavo no es mayor que el enviado.

No se molesta a los fieles que siguen a Dios estudiando,

porque el señor no es mayor que el que lo envía.

Ley:

El sexo no es mayor que la ciencia,

porque el esclavo no es mayor que el que lo envía.

La violencia no es mayor que la ciencia,

porque el esclavo no es mayor que el que lo envía.


Teorema:

int[ax = 0]-[1][ P(t)·d_{t}[H(t,ax)] ]d[ax]+Q(ut)·H(t,1) = 0

H(t,ax) = Anti-[ ( s /o(s)o/ int[ d_{ax}[ (-1)·Q(ut)·s·(ax)^{2} ] ]d[s] ) ]-( int[ ( 1/P(t) ) ]d[t] )

Demostración:

int[ax = 0]-[1][ P(t)·d_{ax}[ (-1)·Q(ut)·H(t,ax)·(ax)^{2} ]·( 1/P(t) ) ]d[ax]+Q(ut)·H(t,1) = ...

... int[ax = 0]-[1][ d_{ax}[ (-1)·Q(ut)·H(t,ax)·(ax)^{2} ] ]d[ax]+Q(ut)·H(t,1) = ...

... ( (-1)·Q(ut)·H(t,1)+Q(ut)·H(t,0)·0^{2} )+Q(ut)·H(t,1) = (-1)·Q(ut)·H(t,1)+Q(ut)·H(t,1) = 0

Ley:

int[ax = 0]-[1][ (-1)·(b/m)·t^{2}·d_{t}[H(t,ax)] ]d[ax]+Q(ut)·H(t,1) = 0

H(t,ax) = Anti-[ ( s /o(s)o/ int[ d_{ax}[ (-1)·Q(ut)·s·(ax)^{2} ] ]d[s] ) ]-( (m/b)·(1/t) )

Ley:

int[ax = 0]-[1][ (-1)·(k/m)·t^{3}·d_{t}[H(t,ax)] ]d[ax]+Q(ut)·H(t,1) = 0

H(t,ax) = Anti-[ ( s /o(s)o/ int[ d_{ax}[ (-1)·Q(ut)·s·(ax)^{2} ] ]d[s] ) ]-( (1/2)·(m/k)·(1/t)^{2} )


Examen:

Ley:

int[x = 0]-[1][ (m/b)·d_{t}[H(t,ax)] ]d[ax]+Q(ut)·H(t,1) = ct

H(t,x) = ?

Ley:

int[x = 0]-[1][ u·(m/k)·d_{t}[H(t,ax)] ]d[ax]+Q(ut)·H(t,1) = ct

H(t,x) = ?


Teorema:

[As][ s > 0 ==> ...

... | int[ax = 0]-[1][ P(t)·d_{t}[H(t,ax)] ]d[ax]+Q(ut)·lim[n = oo][ sum[k = 1]-[n][ H(t,(k/n)) ] ] | < s ]

<==>

H(t,ax) = Anti-[ ( s /o(s)o/ int[ (-1)·Q(ut)·s ]d[s] ) ]-( int[ ( 1/P(t) ) ]d[t] )

Demostración:

int[ax = 0]-[1][ P(t)·( (-1)·Q(ut)·H(t,ax) )·( 1/P(t) ) ]d[ax]+Q(ut)·int[ax = 0]-[1][ H(t,ax) ]d[ax] = ...

... int[ax = 0]-[1][ ( (-1)·Q(ut)·H(t,ax) ) ]d[ax]+Q(ut)·int[ax = 0]-[1][ H(t,ax) ]d[ax] = ...

... (-1)·Q(ut)·int[ax = 0]-[1][ H(t,ax) ]d[ax]+Q(ut)·int[ax = 0]-[1][ H(t,ax) ]d[ax] = 0

Teorema:

[As][ s > 0 ==> ...

... | int[ax = 0]-[1][ P(t)·d_{t}[H(t,ax)] ]d[ax]+...

... Q(ut)·lim[n = oo][ sum[k = 1]-[n][ (ut)^{m}·(k/n)^{q} ] ] | < s ]

<==>

H(t,ax) = ...

... (-1)·(1/u)·int[ Q(ut) ]d[ut] [o(t)o] ( (1/u)·( 1/(m+1) )·(ut)^{m+1}·(ax)^{q} ) [o(t)o] int[ ( 1/P(t) ) ]d[t]

Teorema:

[As][ s > 0 ==> ...

... | int[ax = 0]-[1][ P(t)·d_{t}[H(t,ax)] ]d[ax]+...

... Q(ut)·lim[n = oo][ sum[k = 1]-[n][ (ut)^{m}·e^{(k/n)} ] ] | < s ]

<==>

H(t,ax) = ...

... (-1)·(1/u)·int[ Q(ut) ]d[ut] [o(t)o] ( (1/u)·( 1/(m+1) )·(ut)^{m+1}·e^{ax} ) [o(t)o] int[ ( 1/P(t) ) ]d[t]


Axioma: [ de Stolz constructor ]

Si ( lim[n = oo][ (a_{n+1}+(-1)·a_{n})/(b_{n+1}+(-1)·b_{n}) ] = a & ...

... lim[n = oo][ a_{n}/b_{n} ] = b ) ==> ...

... ( a = b <==> [Af(x)][ f(x) es constrocter ponens ] )

... <==>

... ( a != b <==> [Ef(x)][ f(x) es destrocter ponens ] )

Axioma: [ de Stolz destructor ]

Si ( lim[n = oo][ (a_{n+1}+(-1)·a_{n})/(b_{n+1}+(-1)·b_{n}) ] = a & ...

... lim[n = oo][ a_{n}/b_{n} ] = b ) ==> 

... ( a != b <==> [Af(x)][ f(x) es constrocter ponens ] )

... <==>

... ( a = b <==> [Ef(x)][ f(x) es destrocter ponens ] )


Teorema:

lim[n = oo][ ...

... ( < 0x,...,0x > )^{(1/2)} ...

... o ...

... ( < ln((1/n)·x+1),...(n)...,0 >,...(n)...,< 0,...(n)...,ln(x+1) > )

... o ...

... ( < 0x,...,0x > )^{(1/2)} = (x+1)·ln(x+1)+(-x)

Demostración: [ por Stolz destructor ]

u(0) = m

v(m) = (-1)

p(0) = j

q(j) = 1

h(1) = (1/x)

lim[n = oo][ ln( ((k/(n+1))·x+1)/((k/n)·x+1) ) ] = ln( ((k/oo)·x+1)/((k/oo)·x+1) ) = ln(1) = 0

lim[n = oo][ sum[k = 1]-[n][ ln((k/n)·x+1) ]·0x ] < ...

... lim[n = oo][ sum[k = 1]-[n][ ln(x+1) ]·0x ] = ln(x+1)·x

ln(x+1)·x = ( ( 1+p(0) )·ln(x+1)+u(0) )·x = ( (1+j)·ln(x+1)+m )·x = ...

... ( (1+h( w(j) ))·ln(x+1)+v(m) )·x = ( (1+(1/x))·ln(x+1)+(-1) )·x = (x+1)·ln(x+1)+(-x)

Teorema:

lim[n = oo][ ...

... ( < 0x,...,0x > )^{(1/2)} ...

... o ...

... ( < sinh((1/n)·x),...(n)...,0 >,...(n)...,< 0,...(n)...,sinh(x) > )

... o ...

... ( < 0x,...,0x > )^{(1/2)} = cosh(x)+(-1)

Demostración: [ por Stolz destructor ]

u(1) = m

v(m) = 2k+2

w(0) = j

h(j) = (-1)

lim[n = oo][ sinh( (k/(n+1))·x+1 )+(-1)·sinh( (k/n)·x+1 ) ] = ...

... sinh((k/oo)·x+1)+(-1)·sinh((k/oo)·x+1) = 0

lim[n = oo][ sum[k = 1]-[n][ sinh((k/n)·x) ]·0x ] < ...

... lim[n = oo][ sum[k = 1]-[n][ sinh(x+1) ]·0x ] = sinh(x+1)·x

sinh(x+1)·x = sum[k = 0]-[oo][ (1/(2k+1)!)·x^{2k+2} ] = ...

... sum[k = 0]-[oo][ ( 1/v(u(1)) )·(1/(2k+1)!)·x^{2k+2} ] = ...

... sum[k = 0]-[oo][ (1/(2k+2)!)·x^{2k+2} ] = sum[k = 0]-[oo][ (1/(2·(k+1))!)·x^{2·(k+1)} ] = ...

... sum[k = 0]-[oo][ (1/(2p)!)·x^{2p} ] = cosh(x) = cosh(x)+h( w(0) ) = cosh(x)+(-1)

lunes, 9 de septiembre de 2024

ecuaciones-de-Maxwell y análisis-funcional-y-teoría-de-cuerdas y medicina y análisis-matemático y economía y mecánica-integral

Principio:

E(x,y,z) = qk·(1/r)^{3}·< x,y,z >

B(d_{t}[x],d_{t}[y],d_{t}[z]) = (-1)·qk·(1/r)^{3}·< d_{t}[x],d_{t}[y],d_{t}[z] >

Principio:

E(yz,zx,xy) = qk·(1/r)^{4}·< yz,zx,xy >

B(d_{t}[yz],d_{t}[zx],d_{t}[xy]) = (-1)·qk·(1/r)^{4}·< d_{t}[yz],d_{t}[zx],d_{t}[xy] >


Ley:

div[ E(x,y,z) ] = 3qk·(1/r)^{3}

div[ int[ B(d_{t}[x],d_{t}[y],d_{t}[z]) ]d[t] ] = (-3)·qk·(1/r)^{3}

Anti-div[ E(yz,zx,xy) ] = 3qk·(1/r)^{4}

Anti-div[ int[ B(d_{t}[yz],d_{t}[zx],d_{t}[xy]) ]d[t] ] = (-3)·qk·(1/r)^{4}


Ley:

div[ E(x,y,z) ] = d_{xyz}[ Anti-potencial[ E(x,y,z) ] ]

Anti-div[ E(yz,zx,xy) ] = d_{xyz}[ potencial[ E(yz,zx,xy) ] ]

Ley:

div[ int[ B(d_{t}[x],d_{t}[y],d_{t}[z]) ]d[t] ] = ...

... d_{xyz}[ Anti-potencial[ int[ B(d_{t}[x],d_{t}[y],d_{t}[z]) ]d[t] ] ]

Anti-div[ int[ B(d_{t}[yz],d_{t}[zx],d_{t}[xy]) ]d[t] ] = ...

... d_{xyz}[ potencial[ int[ B(d_{t}[yz],d_{t}[zx],d_{t}[xy]) ]d[t] ] ]


Ley:

Anti-potencial[ (1/r)·rot[ E(x,y,z) ] ] = ...

... qk·(1/r)^{3}+(1/3)·( 1/(xyz) )·...

... Anti-potencial[ int[ B(d_{t}[x],d_{t}[y],d_{t}[z]) ]d[t] ]

Ley:

Anti-potencial[ (1/r)·rot[ int[ B(d_{t}[x],d_{t}[y],d_{t}[z],d_{t}[q(t)]) ]d[t] ] ] = ...

... d_{t}[q(t)]·k·(1/r)^{3}+(-1)·(1/3)·( 1/(xyz) )·...

... Anti-potencial[ d_{t}[ E(x,y,z,q(t)) ]+B(d_{t}[x],d_{t}[y],d_{t}[z],q(t)) ]


Ley:

rot[ E(x,y,z) ] = qk·(1/r)^{6}·< x,y,z >·< y+(-z),z+(-x),x+(-y) >

rot[ int[ B(d_{t}[x],d_{t}[y],d_{t}[z],d_{t}[q(t)]) ]d[t] ] = ...

... (-1)·q(t) [o(t)o] k·(1/r)^{6}·< x,y,z >·< y+(-z),z+(-x),x+(-y) >


Ley:

Sea Anti-potencial[ J(x,y,z) ] = qk·(1/r)^{3} ==>

J(x,y,z) = (1/r)·rot[ E(x,y,z) ]+...

... (-1)·(1/3)·( ...

... ( 1/(xyz) )·int[ B(d_{t}[x],d_{t}[y],d_{t}[z]) ]d[t]+...

... < (1/yz),(1/zx),(1/xy) >·qk·(1/r)^{3} )

Sea Anti-potencial[ K(x,y,z) ] = d_{t}[q(t)]·k·(1/r)^{3} ==>

K(x,y,z) = (1/r)·rot[ int[ B(d_{t}[x],d_{t}[y],d_{t}[z],d_{t}[q(t)]) ]d[t] ]+...

... (1/3)·( ...

... ( 1/(xyz) )·( d_{t}[ E(x,y,z,q(t)) ]+B(d_{t}[x],d_{t}[y],d_{t}[z],q(t)) )+...

... < (1/yz),(1/zx),(1/xy) >·d_{t}[q(t)]·k·(1/r)^{3} )

Deducción:

Anti-Grad[ Anti-potencial[ F(x,y,z) ] ] = F(x,y,z)

Anti-Grad[ H(x,y,z)·Anti-potencial[ F(x,y,z) ] ] = ...

... H(x,y,z)·F(x,y,z)+Anti-Grad[ H(x,y,z) ]·Anti-potencial[ F(x,y,z) ]


Ley:

Potencial[ (1/r)^{2}·Anti-rot[ E(yz,zx,xy) ] ] = ...

... qk·(1/r)^{4}+(1/3)·( 1/(xyz) )·Potencial[ int[ B(d_{t}[yz],d_{t}[zx],d_{t}[xy]) ]d[t] ]

Ley:

Potencial[ (1/r)^{2}·Anti-rot[ int[ B(d_{t}[yz],d_{t}[zx],d_{t}[xy],d_{t}[q(t)]) ]d[t] ] ] = ...

... d_{t}[q(t)]·k·(1/r)^{4}+(-1)·(1/3)·( 1/(xyz) )·...

... Potencial[ d_{t}[ E(yz,zx,xy,q(t)) ]+B(d_{t}[yz],d_{t}[zx],d_{t}[xy],q(t)) ]


Ley:

Anti-rot[ E(yz,zx,xy) ] = qk·(1/r)^{6}·< yz,zx,xy >·< y+(-z),z+(-x),x+(-y) >

Anti-rot[ int[ B(d_{t}[yz],d_{t}[zx],d_{t}[xy],d_{t}[q(t)]) ]d[t] ] = ...

... (-1)·q(t) [o(t)o] k·(1/r)^{6}·< yz,zx,xy >·< y+(-z),z+(-x),x+(-y) >


Ley:

Sea Potencial[ P(yz,zx,xy) ] = qk·(1/r)^{4} ==>

P(yz,zx,xy) = (1/r)^{2}·Anti-rot[ E(yz,zx,xy) ]+...

... (-1)·(1/3)·( ...

... ( 1/(xyz) )·int[ B(d_{t}[yz],d_{t}[zx],d_{t}[xy]) ]d[t]+...

... (-1)·< (1/x),(1/y),(1/z) >·qk·(1/r)^{4} )

Sea Potencial[ Q(yz,zx,xy) ] = d_{t}[q(t)]·k·(1/r)^{4} ==>

Q(yz,zx,xy) = (1/r)^{2}·Anti-rot[ int[ B(d_{t}[yz],d_{t}[zx],d_{t}[xy],d_{t}[q(t)]) ]d[t] ]+...

... (1/3)·( ...

... ( 1/(xyz) )·( d_{t}[ E(yz,zx,xy,q(t)) ]+B(d_{t}[yz],d_{t}[zx],d_{t}[xy],q(t)) )+...

... (-1)·< (1/x),(1/y),(1/z) >·d_{t}[q(t)]·k·(1/r)^{4} )

Deducción:

Grad[ Potencial[ F(x,y,z) ] ] = F(x,y,z)

Grad[ H(x,y,z)·Potencial[ F(x,y,z) ] ] = ...

... H(x,y,z)·F(x,y,z)+Grad[ H(x,y,z) ]·Potencial[ F(x,y,z) ]


Teorema:

Sea H( y(x) ) = ( d_{x}[y(x)] )^{n+1}+(-1)·(n+1)·d_{x}[y(x)] ==> ...

... Si y(x) = x ==> d_{x}[ H( y(x) ) ] = 0 

Teorema:

Sea H( y(x) ) = ( d_{x}[y(x)] )^{2n+1}+(-1)·( 1/(n+1) )·d_{x}[y(x)] ==> ...

... Si y(x) = (-x) ==> int[ H( y(x) ) ]d[x] = 0


Teorema: [ de determinante de Wronsky ]

Sea H( y(x) ) = det( d_{x}[y(x)]^{n+1},( f(x) )^{n+1} ) ==>

.... Si y(x) = int[ f(x) ]d[x] ==> H( y(x) ) = 0

Teorema: [ de determinante de Wronsky ]

Sea H( y(x) ) = det( d_{x}[y(x)]^{n},( f(x) )^{m} ) ==>

.... Si y(x) = int[ ( f(x) )^{(m/n)} ]d[x] ==> H( y(x) ) = 0


Teorema:

Sea H( y(x) ) = ( x /o(x)o/ d_{x}[y(x)] ) [o(x)o] ( d_{x}[y(x)] )^{n+1}+(-1)·(n+1)·F(x) ==> ...

... Si y(x) = int[ ( f(x) )^{(1/n)} ]d[x] ==> d_{x}[ H( y(x) ) ] = 0

Teorema:

Sea H( y(x) ) = ( x /o(x)o/ d_{x}[y(x)] ) [o(x)o] e^{n·d_{x}[y(x)]}+(-n)·F(x) ==> ...

... Si y(x) = int[ (1/n)·ln( f(x) ) ]d[x] ==> d_{x}[ H( y(x) ) ] = 0


Teorema:

Sea H(x(t),y(t)) = int-int[ (xy)^{n} ]d[x]d[y]+(-1)·f(t) ==> ...

... Si ( ...

... x(t) = ( (n+1)·( f(t) )^{(1/m)} )^{(1/(n+1))} & ...

... y(t) = ( (n+1)·( f(t) )^{1+(-1)·(1/m)} )^{(1/(n+1))} ) ==> H(x(t),y(t)) = 0

Teorema:

Sea H(x(t),y(t)) = int[ x^{n} ]d[x]+int[ y^{n} ]d[y]+(-1)·f(t) ==> ...

... Si ( ...

... x(t) = ( (1/m)·(n+1)·f(t) )^{(1/(n+1)} & ...

... y(t) = ( ( 1+(-1)·(1/m) )·(n+1)·f(t) )^{(1/(n+1))} ) ==> H(x(t),y(t)) = 0


Teorema:

Sea H(x(t),y(t)) = int-int[ e^{nx+ny} ]d[x]d[y]+(-1)·f(t) ==> ...

... Si ( ...

... x(t) = (1/n)·ln( n·( f(t) )^{(1/m)} ) & ...

... y(t) = (1/n)·ln( n·( f(t) )^{1+(-1)·(1/m)} ) ) ==> H(x(t),y(t)) = 0

Teorema:

Sea H(x(t),y(t)) = int[ e^{nx} ]d[x]+int[ e^{ny} ]d[y]+(-1)·f(t) ==> ...

... Si ( ...

... x(t) = (1/n)·ln( (1/m)·n·f(t) ) & ...

... y(t) = (1/n)·ln( ( 1+(-1)·(1/m) )·n·f(t) ) ) ==> H(x(t),y(t)) = 0


Examen de análisis funcional:

Teorema:

Sea H(x(t),y(t)) = int-int[ ( 1/(xy) ) ]d[x]d[y]+(-1)·f(t) ==> ...

... Si ( x(t) = ? & y(t) = ? ) ==> H(x(t),y(t)) = 0

Teorema:

Sea H(x(t),y(t)) = int[ (1/x) ]d[x]+int[ (1/y) ]d[y]+(-1)·f(t) ==> ...

... Si ( x(t) = ? & y(t) = ? ) ==> H(x(t),y(t)) = 0


Recubrimiento de cuerda:

Ley:

Sea H(u(t),v(t)) = int-int[ ku·jv ) ]d[u]d[v]+(-1)·( E(t) )^{2} ==> ...

... Si ( u(t) = ( 2·(1/k)·E(t) )^{(1/2)} & v(t) = ( 2·(1/j)·E(t) )^{(1/2)} ) ==> H(u(t),v(t)) = 0

Ley:

Sea H(u(t),v(t)) = int[ ku ]d[u]+int[ jv ]d[v]+(-2)·E(t) ==> ...

... Si ( u(t) = ( 2·(1/k)·E(t) )^{(1/2)} & v(t) = ( 2·(1/j)·E(t) )^{(1/2)} ) ==> H(u(t),v(t)) = 0


Ley:

Sea H(u(t),v(t)) = int-int[ ke^{iau}·je^{iav} ) ]d[u]d[v]+(-1)·( F(t) )^{2} ==> ...

... Si ( u(t) = ( 1/(ia) )·ln( F(t)·(1/k)·ia ) & v(t) = ( 1/(ia) )·ln( F(t)·(1/j)·ia ) ) ==> H(u(t),v(t)) = 0

Ley:

Sea H(u(t),v(t)) = int[ ke^{iau} ]d[u]+int[ je^{iav} ]d[v]+(-2)·F(t) ==> ...

... Si ( u(t) = ( 1/(ia) )·ln( F(t)·(1/k)·ia ) & v(t) = ( 1/(ia) )·ln( F(t)·(1/j)·ia ) ) ==> H(u(t),v(t)) = 0


Ley:

Sea H(u(t),v(t)) = ...

... int-int[ (1/m)·h^{2}·(1/u)^{3}·(1/M)·h^{2}·(1/v)^{3} ) ]d[u]d[v]+(-1)·( E(t) )^{2} ==> ...

... Si ( u(t) = ih·( 1/(2m·E(t)) )^{(1/2)} & v(t) = ih·( 1/(2M·E(t)) )^{(1/2)} ==> H(u(t),v(t)) = 0

Ley:

Sea H(u(t),v(t)) = ...

... int[ (1/m)·h^{2}·(1/u)^{3} ]d[u]+int[ (1/M)·h^{2}·(1/v)^{3} ]d[v]+(-2)·E(t) ==> ...

... Si ( u(t) = ih·( 1/(2m·E(t)) )^{(1/2)} & v(t) = ih·( 1/(2M·E(t)) )^{(1/2)} ==> H(u(t),v(t)) = 0


Examen de análisis funcional y teoría de cuerdas:

Ley:

Sea H(u(t),v(t)) = int-int[ qge^{iau}·pge^{iav} ) ]d[u]d[v]+(-1)·( E(t) )^{2} ==> ...

... Si ( u(t) = ? & v(t) = ? ==> H(u(t),v(t)) = 0

Ley:

Sea H(u(t),v(t)) = int[ qge^{iau} ]d[u]+int[ pge^{iav} ]d[v]+(-2)·E(t) ==> ...

... Si ( u(t) = ? & v(t) = ? ==> H(u(t),v(t)) = 0

Ley:

Sea H(u(t),v(t)) = int-int[ (1/m)·hbia·e^{iau}·(1/M)·hbia·e^{iav} ) ]d[u]d[v]+(-1)·( E(t) )^{2} ==> ...

... Si ( u(t) = ? & v(t) = ? ==> H(u(t),v(t)) = 0

Ley:

Sea H(u(t),v(t)) = int[ (1/m)·hbia·e^{iau} ]d[u]+int[ (1/M)·hbia·e^{iav} ]d[v]+(-2)·E(t) ==> ...

... Si ( u(t) = ? & v(t) = ? ==> H(u(t),v(t)) = 0


Ley:

Operación Teoróctetxtekiana:

Se emite Luz constructora dentro del cuerpo,

para genes de orden 2 no cancerígenos,

hasta que se va la banda de absorción en la sonda sanguínea.

Genes A-B:

N(CH)CC(CH)N-C(NH)O(NH)C

N(CH)CC(CH)N-CO(NH)OC

Genes S-T:

N(CCg)CC(CCg)N-C(NCg)He(NCg)C

N(CCg)CC(CCg)N-CHe(NH)HeC

Orden de los Genes:

Destructores + Constructores = 4+(-2) = 2

Operación:

1111 [&] 0010 = 0010

1110 [&] 0010 = 0010

Operación Mesorgóctetxtekiana:

Se emite Luz destructora dentro del cuerpo,

para genes de orden 1 cancerígenos,

hasta que se va la banda de absorción en la sonda sanguínea.

Genes A-B:

NNCCNN-CBeOBeC

NNCCNN-COBeOC

Genes S-T:

NNCCNN-CBeHeBeC

NNCCNN-CHeBeHeC

Orden de los Genes:

Destructores + Constructores = 2+(-1) = 1

Operación:

1111 [&] 0001 = 0001

1110 [&] 0001 = 0000

Ley:

Quimioterapia de tumores interiores:

3 Rayos ultra X + 1 Rayo infra X

3 Rayos infra X + 1 Rayo ultra X

Quimioterapia de tumores exteriores:

3 Rayos ultra violetas + 1 Rayo infra rojo

3 Rayos infra rojos + 1 Rayo ultra violeta


Espectro de serie:

Teorema:

Sea [Ak][ |x|^{k} < oo ] ==>

Si H(x) = sum[k = 0]-[oo][ a_{k}·x^{k} ] ==>

lim[n = oo][ ...

... ( < 1,...,x^{n} > )^{(1/2)} ...

... o ...

... ( < a_{0},...(n+1)...,0 >,...(n+1)...,< 0,...(n+1)...,a_{n} > ) ...

... o ...

... ( < 1,...,x^{n} > )^{(1/2)} ] = H(x)

Teorema:

Sea [Ak][ |x|^{k} < oo ] ==>

Si H(x) = sum[k = 0]-[oo][ a_{k}·x^{k} ] ==>

lim[n = oo][ ...

... < 1,...,x^{n} > ...

... o ...

... ( < a_{0},...(n+1)...,0 >,...(n+1)...,< 0,...(n+1)...,a_{2n} > ) ...

... o ...

... < 1,...,x^{n} > ] = (1/2)·( H(x)+H(-x) )


Teorema:

lim[n = oo][ ...

... < 1,...,x^{n} > ...

... o ...

... ( < 1,...(n+1)...,0 >,...(n+1)...,< 0,...(n+1)...,1 > ) ...

... o ...

... < 1,...,x^{n} > ] = (1/2)·( ( 1/(1+x) )+( 1/(1+(-x)) ) )

Teorema:

lim[n = oo][ ...

... < 1,...,x^{n} > ...

... o ...

... ( < x^{p},...(n+1)...,0 >,...(n+1)...,< 0,...(n+1)...,x^{p} > ) ...

... o ...

... < 1,...,x^{n} > ] = (1/2)·x^{p}·( ( 1/(1+x) )+( 1/(1+(-x)) ) )


Teorema:

lim[n = oo][ ...

... < 1,...,x^{n} > ...

... o ...

... ( < 1,...(n+1)...,0 >,...(n+1)...,< 0,...(n+1)...,(1/(2n)!) > ) ...

... o ...

... < 1,...,x^{n} > ] = cosh(x)

Teorema:

lim[n = oo][ ...

... < 1,...,x^{n} > ...

... o ...

... ( < x,...(n+1)...,0 >,...(n+1)...,< 0,...(n+1)...,(1/(2n+1)!)·x > ) ...

... o ...

... < 1,...,x^{n} > ] = sinh(x)


Teorema:

lim[n = oo][ ...

... < x,...,x^{n} > ...

... o ...

... ( < 1,...(n)...,0 >,...(n)...,< 0,...(n)...,(1/(2n+(-2))!) > ) ...

... o ...

... < x,...,x^{n} > ] = x^{2}·cosh(x)

Teorema:

lim[n = oo][ ...

... < x,...,x^{n} > ...

... o ...

... ( < x,...(n)...,0 >,...(n)...,< 0,...(n)...,(1/(2n+(-1))!)·x > ) ...

... o ...

... < x,...,x^{n} > ] = x^{2}·sinh(x)


Teorema:

Sea p >] 1 ==> 

lim[n = oo][ ...

... < 1,...,x^{n} > ...

... o ...

... ( < ( 1/(p+1) ),...(n+1)...,0 >,...(n+1)...,< 0,...(n+1)...,(1/(2n)!)·( 1/((2n)+(p+1)) ) > ) ...

... o ...

... < 1,...,x^{n} > ] = er-cosh[p+1](x)

Teorema:

Sea p >] 1 ==> 

lim[n = oo][ ...

... < 1,...,x^{n} > ...

... o ...

... ( < ( 1/(p+1) )·x,...(n+1)...,0 >,...(n+1)...,< 0,...(n+1)...,(1/(2n+1)!)·( 1/((2n+1)+(p+1)) )·x > ) ...

... o ...

... < 1,...,x^{n} > ] = er-sinh[p+1](x)


Integral de Riemann:

f(x) es integrable Riemann

<==>

[As][ s > 0 ==> [En_{0}][An][ n > n_{0} ==> ...

... | sum[k = 1]-[n][ f( (k/n)·x )·0x ]+(-1)·int[x = 0]-[x][ f(x) ]d[x] | < s ] ]

Teorema:

Si ( f(x) es integrable Riemann & g(x) es integrable Riemann ) ==> f(x)+g(x) es integrable Riemann

Demostración:

Sea s > 0 ==>

Sea s_{1}+s_{2} = s ==>

Se define n_{0} > max{n_{1},n_{2}} ==>

Sea n > n_{0} ==>

| sum[k = 1]-[n][ ( f( (k/n)·x )+g( (k/n)·x ) )·0x ]+(-1)·int[x = 0]-[x][ f(x)+g(x) ]d[x] | < s

Teorema:

Si ( f(x) es integrable Riemann & w€R ) ==> w·f(x) es integrable Riemann

Demostración:

Sea s > 0 ==>

Sea |w|·s_{1} = s ==>

Se define n_{0} > n_{1} ==>

Sea n > n_{0} ==>

| sum[k = 1]-[n][ ( w·f( (k/n)·x ) )·0x ]+(-1)·int[x = 0]-[x][ w·f(x) ]d[x] | < s

Teorema:

Si f(x) es integrable Riemann ==> f(x) es continua

Demostración:

Sea s > 0 ==>

Sea s_{1}+s_{2} = s ==>

Se define n_{0} > max{n_{1},n_{2}} ==>

Sea n > n_{0} ==>

lim[h = 0][ ...

... | sum[k = 1]-[n][ ( f( (k/n)·x+h )+(-1)·f( (k/n)·x ) )·0x ]+(-1)·int[x = x]-[x+h][ f(x) ]d[x] | ] = ...

lim[h = 0][ | sum[k = 1]-[n][ f( (k/n)·x+h )·0x ]+(-1)·int[x = 0]-[x+h][ f(x) ]d[x] |+ ... 

... | sum[k = 1]-[n][ f( (k/n)·x )·0x ]+(-1)·int[x = 0]-[x][ f(x) ]d[x] | ] < s



Espectro integral:

Teorema:

Si F(x) = int[x = 0]-[x][ f(x) ]d[x] ==>

lim[n = oo][ ...

... ( < 0x,...,0x > )^{(1/2)} ...

... o ...

... ( < f((1/n)·x),...(n)...,0 >,...(n)...,< 0,...(n)...,f((n/n)·x) > ) ...

... o ...

... ( < 0x,...,0x > )^{(1/2)} ] = F(x)


Teorema:

lim[n = oo][ ...

... ( < 0x,...,0x > )^{(1/2)} ...

... o ...

... ( < 1,...(n)...,0 >,...(n)...,< 0,...(n)...,1 > ) ...

... o ...

... ( < 0x,...,0x > )^{(1/2)} ] = x

Teorema:

Sea p >] 0 ==>

lim[n = oo][ ...

... ( < 0x,...,0x > )^{(1/2)} ...

... o ...

... ( < ( (1/n)·x )^{p},...(n)...,0 >,...(n)...,< 0,...(n)...,( (n/n)·x )^{p} > ) ...

... o ...

... ( < 0x,...,0x > )^{(1/2)} ] = ( 1/(p+1) )·x^{p+1}

Anexo: [ de Stolz ]

oo^{p+1}+(p+1)·oo^{p}+...+1 = oo^{p+1}


Teorema:

lim[n = oo][ ...

... ( < 0x,...,0x > )^{(1/2)} ...

... o ...

... ( < e^{(1/n)·x},...(n)...,0 >,...(n)...,< 0,...(n)...,e^{(n/n)·x} > ) ...

... o ...

... ( < 0x,...,0x > )^{(1/2)} ] = e^{x}+(-1)

Teorema:

lim[n = oo][ ...

... ( < 0x,...,0x > )^{(1/2)} ...

... o ...

... ( < p^{(1/n)·x},...(n)...,0 >,...(n)...,< 0,...(n)...,p^{(n/n)·x} > ) ...

... o ...

... ( < 0x,...,0x > )^{(1/2)} ] = ( 1/ln(p) )·( p^{x}+(-1) )


Examen de análisis matemático:

Encontrad el espectro integral de la función F(x) = mx^{2}


Universidad de Stroniken:

Curso 1:

Cálculo diferencial:

en Derivadas parciales.

Algebra lineal I:

en vectores y polinomios.

Curso 2:

Cálculo integral:

en Producto integral.

Álgebra lineal II:

en matrices.

Curso 3:

Análisis complejo:

en Integrales circulares.

Ecuaciones diferenciales:

en Anti-Funciones.

Curso 4:

- No cursado en economía. -

Análisis funcional:

en Integrales múltiples.

Geometría diferencial:

en Formas fundamentales.


Título de Matemáticas:

Curso 5:

Análisis matemático I:

en sucesiones y desigualdades.

Teoría de conjuntos.

Curso 6:

Análisis matemático II:

en series y series trigonométricas.

Topología-y-Medida.

Curso 7:

Análisis matemático III:

en espectro y continuidad.

Álgebra:

en ecuaciones algebraicas.

Curso 8:

Análisis matemático IV:

en sucesiones de funciones.

Teoría de números.


Título de Física-y-Psíquica:

Curso 5:

Mecánica estadística.

Psico-neurología y Circuitos eléctricos.

Curso 6:

Ecuaciones de Maxwell.

Termodinámica.

Curso 7:

Mecánica cuántica.

Relatividad.

Curso 8:

Mecanismo de Gauge.

Teoría de Cuerdas.


Título de Economía:

Curso 5:

Socios y Inversiones.

Automatismos y Tarifas variables.

Curso 6:

Bolsas y Patrimonio.

Créditos y Intereses.

Curso 7:

Impuestos generados


Cardenal de la ciencia:

Matemático.

Arco-obispo de la ciencia:

Físico.

Obispo de la ciencia:

Economista.


Lema:

Socialismo:

lim[r = 0][ int[z = re^{ix}+1][ f(z)/(z+(-1)) ]·d_{x}[z]·d[x] ] = 2pi·i·f(1) = 2

f(a) = a·( 1/(pi·i) )

Social-Democracia:

lim[r = 0][ int[z = re^{ix}+1][ f(z)/((z+(-1))·(z+1)) ]·d_{x}[z]·d[x] ] = pi·i·f(1) = 1

f(a) = a·( 1/(pi·i) )

Lema:

Socialismo:

lim[r = 0][ int[z = re^{ix}+(-1)][ f(z)/(z+1) ]·d_{x}[z]·d[x] ] = 2pi·i·f(-1) = 2

f(a) = (-a)·( 1/(pi·i) )

Social-Democracia:

lim[r = 0][ int[z = re^{ix}+(-1)][ f(z)/((z+3)·(z+1)) ]·d_{x}[z]·d[x] ] = pi·i·f(-1) = 1

f(a) = (-a)·( 1/(pi·i) )

Lema:

Socialismo:

lim[r = 0][ ...

... int[z = ( re^{ix}+1 )^{(1/2)}][ f(z^{2})·( (z^{2}+1)/(z^{2}+(-1)) ) ]·d_{x}[z]·d[x] ] = 2pi·i·f(1) = 2

f(a) = a·(1/pi·i)

Social-Democracia:

lim[r = 0][ int[z = ( re^{ix}+1 )^{(1/2)}][ f(z^{2})/(z^{2}+(-1)) ]·d_{x}[z]·d[x] ] = pi·i·f(1) = 1

f(a) = a·(1/pi·i)

Lema:

Socialismo:

lim[r = 0][ ...

... int[z = ( re^{ix}+(-1) )^{(1/2)}][ f(z^{2})·( (z^{2}+3)/(z^{2}+1) ) ]·d_{x}[z]·d[x] ] = 2pi·f(-1) = 2

f(a) = (-a)·(1/pi)

Social-Democracia:

lim[r = 0][ int[z = ( re^{ix}+(-1) )^{(1/2)}][ f(z^{2})/(z^{2}+1) ]·d_{x}[z]·d[x] ] = pi·f(-1) = 1

f(a) = (-a)·(1/pi)


Ley:

int[ax = 0]-[1][ d_{t}[y(t,ax)] ]d[ax]+u·w(ut)·y(t,1) = (1/m)·p(t)

y(t,ax) = (1/a)·Anti-[ ( s /o(s)o/ int[ d_{ax}[ ( (-1)·w(ut)·s+(1/m)·p(t)·(a/u) )·(ax)^{2} ] ]d[s] ) ]-(ut)

Ley:

int[ax = 0]-[1][ d_{t}[y(t,ax)]^{2} ]d[ax]+u^{2}·w(ut)·( y(t,1) )^{2} = (2/m)·E(t)

y(t,ax) = (1/a)·...

...Anti-[ ( ...

... s /o(s)o/ int[ d_{ax}[ ( (-1)·w(ut)·s^{2}+(2/m)·E(t)·(a/u)^{2} )·(ax)^{2} ] ]d[s] ...

... )^{[o(s)o] (1/2)} ]-(ut)

Ley:

int[ax = 0]-[1][ d_{t}[y(t,ax)]^{2n} ]d[ax]+u^{2n}·w(ut)·( y(t,1) )^{2n} = ( (2/m)·E(t) )^{n}

y(t,ax) = (1/a)·...

...Anti-[ ( ...

... s /o(s)o/ int[ d_{ax}[ ( (-1)·w(ut)·s^{2n}+( (2/m)·E(t) )^{n}·(a/u)^{2n} )·(ax)^{2} ] ]d[s] ...

... )^{[o(s)o] (1/(2n))} ]-(ut)


Examen de mecánica integral:

Ley:

int[ax = 0]-[1][ d_{t}[y(t,ax)]^{3} ]d[ax]+u^{3}·w(ut)·( y(t,1) )^{3} = (4/m)·c·E(t)

y(t,ax) = ?

Ley:

int[ax = 0]-[1][ d_{t}[y(t,ax)]^{2} ]d[ax]+u^{2}·w(ut)·( y(t,1) )^{2} = (2/m)·c·p(t)

y(t,ax) = ?

Ley:

int[ax = 0]-[1][ d_{t}[y(t,ax)]^{2n} ]d[ax]+u^{2n}·w(ut)·( y(t,1) )^{2n} = ( (2/m)·c·p(t) )^{n}

y(t,ax) = ?


Ley:

int[ax = 0]-[1][ (m/k)·d_{t}[y(t,ax)] ]d[ax]+(1/u)·w(ut)·y(t,1) = r^{2}·(1/c)

y(t,ax) = (1/a)·...

... Anti-[ ( s /o(s)o/ int[ d_{ax}[ ( (-1)·w(ut)·s+r^{2}·(1/c)·au )·(ax)^{2} ] ]d[s] ) ]-((k/m)·(1/u)·t)

Ley:

int[ax = 0]-[1][ (m/b)·d_{t}[y(t,ax)] ]d[ax]+w(ut)·y(t,1) = ct

y(t,ax) = ?