sábado, 16 de mayo de 2020

Lagranià del n-motor eléctric

m^{n}·( d_{tt}^{2}[x]+d_{tt}^{2}[y] )^{n} = (ns)^{n}·(x+y)^{n}


x(t) = E·cos( ((ns)/m)^{(1/2)}·t )
y(t) = E·sin( ((ns)/m)^{(1/2)}·t )


m·( d_{tt}^{2}[x]+d_{tt}^{2}[y] ) = (ns)·(x+y)^{n}


(m/2)·d_{t}[(x+y)]^{2} = (ns)·(1/(n+1))·(x+y)^{(n+1)}


2k+(-2) = k(n+1)
k = ( (-2)/(n+(-1)) )


x(t) = (1/2)·( ( (2/m)((ns)/(n+1)) )^{(1/2)}·( (n+(-1))/(-2) )·t )^{((-2)/(n+(-1)))}
y(t) = (1/2)·( ( (2/m)((ns)/(n+1)) )^{(1/2)}·( (n+(-1))/(-2) )·t )^{((-2)/(n+(-1)))}

tri-motor eléctric


(x+y)^{3} = x^{3}+3x^{2}y+3xy^{2}+y^{3}


Bobines:
E_{1,x} = < E·(1/2)·cos[2](st),0,0 >
E_{1,y} = < 0,E·(1/2)·sin[2](st),0 >
E_{2,x} = < E·(1/2)·cos[2](st),0,0 >
E_{2,y} = < 0,E·(1/2)·sin[2](st),0 >
E_{3,x} = < E·(1/2)·cos[2](st),0,0 >
E_{3,y} = < 0,E·(1/2)·sin[2](st),0 >


d_{t}[E_{1,x}][o]d_{t}[E_{2,x}][o]d_{t}[E_{3,x}]+...
... d_{t}[E_{1,y}][o]d_{t}[E_{2,y}][o]d_{t}[E_{3,y}] = E·s^{3}


Bobines:
E_{1,x} = < E·(1/2)·cos[2]((-s)t),0,0 >
E_{1,y} = < 0,E·(1/2)·sin[2]((-s)t),0 >
E_{2,x} = < E·(1/2)·cos[2]((-s)t),0,0 >
E_{2,y} = < 0,E·(1/2)·sin[2]((-s)t),0 >
E_{3,x} = < E·(1/2)·cos[2]((-s)t),0,0 >
E_{3,y} = < 0,E·(1/2)·sin[2]((-s)t),0 >


d_{t}[E_{1,x}][o]d_{t}[E_{2,x}][o]d_{t}[E_{3,x}]+...
... d_{t}[E_{1,y}][o]d_{t}[E_{2,y}][o]d_{t}[E_{3,y}] = (-1)·E·s^{3}

bi-motor eléctric

(x+y)^{2} = x^{2}+2xy+y^{2}


Bobines:
E_{1,x} = < E·cos(st),0,0 >
E_{1,y} = < 0,E·sin(st),0 >
E_{2,x} = < E·cos(st),0,0 >
E_{2,y} = < 0,E·sin(st),0 >


d_{t}[E_{1,x}][o]d_{t}[E_{2,x}]+d_{t}[E_{1,y}][o]d_{t}[E_{2,y}] = E·s^{2}


Bobines:
E_{1,x} = < E·cos((-s)t),0,0 >
E_{1,y} = < 0,E·sin((-s)t),0 >
E_{2,x} = < E·cos((-s)t),0,0 >
E_{2,y} = < 0,E·sin((-s)t),0 >


d_{t}[E_{1,x}][o]d_{t}[E_{2,x}]+d_{t}[E_{1,y}][o]d_{t}[E_{2,y}] = E·s^{2}


Bobines:
E_{1,x} = < E·cos(st),0,0 >
E_{1,y} = < 0,E·sin(st),0 >
E_{2,x} = < E·cos((-s)t),0,0 >
E_{2,y} = < 0,E·sin((-s)t),0 >


d_{t}[E_{1,x}][o]d_{t}[E_{2,x}]+d_{t}[E_{1,y}][o]d_{t}[E_{2,y}] = (-1)·E·s^{2}


Bobines:
E_{1,x} = < E·cos((-s)t),0,0 >
E_{1,y} = < 0,E·sin((-s)t),0 >
E_{2,x} = < E·cos(st),0,0 >
E_{2,y} = < 0,E·sin(st),0 >


d_{t}[E_{1,x}][o]d_{t}[E_{2,x}]+d_{t}[E_{1,y}][o]d_{t}[E_{2,y}] = (-1)·E·s^{2}

martes, 12 de mayo de 2020

teoria de drets del ciutadà

Dret a menjar.
Dret a becbre.
Dret a fumar.


Drets de regulació de preus per part del estat:
Dret a la sanitat.
Dret a la vivenda digne.


Dret a estudiar.


Dret de reunió.
Dret de associació.

lunes, 11 de mayo de 2020

infeccions de origen para-noide

Es conecta un símbol amb una corda-tub al centre y l'apaga.
Cuan el centre està apagat comença la infecció.
El centre es el sol y el símbol els nuvols y la infecció la tormenta.

domingo, 10 de mayo de 2020

operadors diferencials amb coeficients constants

d_{x}[y(x)]+a·y(x) = 0
y(x) = e^{(-a)x}


d_{xx}[y(x)]+(a+b)·d_{x}[y(x)]+(ab)·y(x) = 0
( d_{x}[...]+a )o( d_{x}[...]+b )[y(x)] = 0
y(x) = e^{(-a)x}+e^{(-b)x}


x·d_{x}[y(x)]+a·y(x) = 0
y(x) = x^{(-a)}


x·d_{x}[ x·d_{x}[y(x)] ]+(a+b)·x·d_{x}[y(x)]+(ab)·y(x) = 0
( x·d_{x}[...]+a )o( x·d_{x}[...]+b )[y(x)] = 0
y(x) = x^{(-a)}+x^{(-b)}


x^{(p+1)}·d_{x}[y(x)]+a·y(x) = 0
y(x) = e^{(a/p)·(1/x^{p})}


x^{(p+1)}·d_{x}[ x^{(p+1)}·d_{x}[y(x)] ]+(a+b)·x^{(p+1)}·d_{x}[y(x)]+(ab)·y(x) = 0
( x^{(p+1)}·d_{x}[...]+a )o( x^{(p+1)}·d_{x}[...]+b )[y(x)] = 0
y(x) = e^{(a/p)·(1/x^{p})}+e^{(b/p)·(1/x^{p})}


x^{((-p)+1)}·d_{x}[y(x)]+a·y(x) = 0
y(x) = e^{(-1)·(a/p)·x^{p}}


x^{((-p)+1)}·d_{x}[ x^{((-p)+1)}·d_{x}[y(x)] ]+(a+b)·x^{((-p)+1)}·d_{x}[y(x)]+(ab)·y(x) = 0
( x^{((-p)+1)}·d_{x}[...]+a )o( x^{((-p)+1)}·d_{x}[...]+b )[y(x)] = 0
y(x) = e^{(-1)·(a/p)·x^{p}}+e^{(-1)·(b/p)·x^{p}}