jueves, 3 de febrero de 2022

electro-magnetisme de ecuacions de fluxe-zero

Principi:

E_{e}(x,y,z) = qk_{e}·(1/r^{2})·( < x,y,z >/r )

B_{e}(x,y,z) = (-1)·qk_{e}·(1/r^{2})·( < d_{t}[x],d_{t}[y],d_{t}[z] >/r )


Lley: [ de anti-gravetat ]

(-r)·(2pi/T) = pq·( k_{e}/m )·(1/r^{2})·( T/(2pi) )

r·(2pi/T) = (-1)·pq·( k_{e}/m )·(1/r^{2})·( T/(2pi) )

T = [ segon ]·[ Radiá ]

Deducció:

d_{tt}^{2}[ r·cos(vt) ] = (-r)·cos(vt)·v^{2}

vT = 2·pi

d_{tt}[r·cos(ut)·sin(vt)] = 0

d_{tt}[r·sin(ut)·sin(vt)] = 0

u = 0


Ecuacions de Maxwell de Fluxe-Zero:


Lley: [ de Maxwell-Coulomb en forma integral ]

anti-potencial[ rot[ E_{e}(r·f(t),r·g(t),r·h(t)) ] ] = ...

... qk_{e}+...

... (1/3)·anti-potencial[ ( 1/(f(t)·g(t)·h(t)) )·int[ B_{e}(r·f(t),r·g(t),r·h(t)) ]d[t] ]

Lley: [ de Maxwell-Ampere en forma integral ]

anti-potencial[ rot[ B_{e}(r·f(t),r·g(t),r·h(t)) ] ] = ...

... d_{t}[q(t)]·k_{e}+...

... (-1)·(1/3)·anti-potencial[ ( 1/(f(t)·g(t)·h(t)) )·d_{t}[ E_{e}(r·f(t),r·g(t),r·h(t),q(t)) ] ]+...

... (-1)·(1/3)·anti-potencial[ ( 1/(f(t)·g(t)·h(t)) )·B_{e}(r·f(t),r·g(t),r·h(t),q(t)) ]


Lley: [ de Maxwell-Coulomb en forma diferencial ]

rot[ E_{e}(r·f(t),r·g(t),r·h(t)) ] = ...

... H_{e}(r·f(t),r·g(t),r·h(t))+(1/3)·( 1/(f(t)·g(t)·h(t)) )·int[ B_{e}(r·f(t),r·g(t),r·h(t)) ]d[t]

Lley: [ de Maxwell-Ampere en forma diferencial ]

rot[ B_{e}(r·f(t),r·g(t),r·h(t)) ] = ...

... J_{e}(r·f(t),r·g(t),r·h(t),q(t))+...

... (-1)·(1/3)·( 1/(f(t)·g(t)·h(t)) )·d_{t}[ E_{e}(r·f(t),r·g(t),r·h(t),q(t)) ]+...

... (-1)·(1/3)·( 1/(f(t)·g(t)·h(t)) )·B_{e}(r·f(t),r·g(t),r·h(t),q(t))


Lley: [ de Maxwell-Coulomb de l'inducció eléctrica ]

H_{e}(r·f(t),r·g(t),r·h(t)) = ...

... rot[ E_{e}(r·f(t),r·g(t),r·h(t)) ]+...

... (1/3)·qk_{e}(1/r^{2})·( 1/(f(t)·g(t)·h(t)) )·< f(t),g(t),h(t) >

Lley: [ de Maxwell-Ampere de l'inducció magnética ]

J_{e}(r·f(t),r·g(t),r·h(t),q(t)) = ...

... rot[ B_{e}(r·f(t),r·g(t),r·h(t)) ]+...

... (1/3)·d_{t}[q(t)]·k_{e}(1/r^{2})·( 1/(f(t)·g(t)·h(t)) )·< f(t),g(t),h(t) >


Lley: [ de Coulomb de l'inducció eléctrica ]

anti-potencial[ H_{e}(r·f(t),r·g(t),r·h(t)) ] = qk_{e}

Lley: [ de Ampere de l'inducció magnética ]

anti-potencial[ J_{e}(r·f(t),r·g(t),r·h(t),q(t)) ] = d_{t}[q(t)]·k_{e}


Lley: [ de Gauss en forma integral ]

anti-potencial[ E_{e}(r·f(t),r·g(t),r·h(t)) ] = ...

... 3qk_{e}·f(t)·g(t)·h(t)

anti-potencial[ B_{e}(r·f(t),r·g(t),r·h(t)) ] = ...

... (-1)·qk_{e}·( d_{t}[f(t)]·g(t)·h(t)+f(t)·d_{t}[g(t)]·h(t)+f(t)·g(t)·d_{t}[h(t)] )


Lley: [ de Gauss en forma diferencial ]

div[ E_{e}(r·f(t),r·g(t),r·h(t)) ] = ...

... 3qk_{e}·(1/r^{3})

div[ B_{e}(r·f(t),r·g(t),r·h(t)) ] = ...

... (-1)·qk_{e}·(1/r^{3})·( ...

... ( d_{tt}^{2}[f(t)]/d_{t}[f(t)] )+...

... ( d_{tt}^{2}[g(t)]/d_{t}[g(t)] )+...

... ( d_{tt}^{2}[h(t)]/d_{t}[h(t)] ) ...

... )

Deducció:

int-int-int[ ( d_{tt}^{2}[x]/d_{t}[x] ) ]( d_{t}[x]·d[t] )d[y]d[z] = d_{t}[x]·yz


Ecucions de Maxwell-Gauss originals:

Lley: [ de Gauss integral ]

anti-potencial[ E_{e}(r,r,r) ] = 3q(r^{s})·k_{e}

anti-potencial[ B_{e}(r,r,r) ] = 0

Lley: [ de Gauss diferencial ]

div[ E_{e}(r,r,r) ] = 3·d_{rrr}^{3}[q(r^{s})·(a/b)]·k_{e}

div[ B_{e}(r,r,r) ] = 0

Deducció:

div[ E_{e}(r,r,r) ] = 3·q(r^{s})·k_{e}(1/r^{3})

div[ E_{e}(r,r,r) ] = 3·q(r^{s})·k_{e}·d_{111}^{3}[(a/b)]·(1/r^{3})

div[ E_{e}(r,r,r) ] = 3·d_{rrr}^{3}[q(r^{s})·(a/b)]·k_{e}


Lley: [ de Maxwell en forma integral ]

anti-potencial[ rot[ E_{e}(r,r,r) ] ] = ...

... qk_{e}+(1/3)·anti-potencial[ int[ B_{e}(r,r,r) ]d[t] ]

anti-potencial[ rot[ B_{e}(r,r,r) ] ] = ...

... d_{t}[q(t)]·k_{e}+(-1)·(1/3)·anti-potencial[ d_{t}[ E_{e}(r,r,r,q(t)) ] ]

Lley: [ de Maxwell en forma diferencial ]

rot[ E_{e}(r,r,r) ] = H_{e}(r,r,r)+(1/3)·int[ B_{e}(r,r,r) ]d[t]

rot[ B_{e}(r,r,r) ] = J_{e}(r,r,r)+(-1)·(1/3)·d_{t}[ E_{e}(r,r,r) ]


Densitats de carga:

Lley:

anti-potencial[ E_{e}(r,r,r) ] = 3q·(a_{1}·r)·k_{e}

div[ E_{e}(r,r,r) ] = 3·d_{rrr}^{3}[q·(a_{1}·r)]·k_{e}

Lley:

anti-potencial[ E_{e}(r,r,r) ] = 3q·(a_{2}·r^{2})·k_{e}

div[ E_{e}(r,r,r) ] = 3·d_{rrr}^{3}[q·(a_{2}·r^{2})·(1/2)]·k_{e}

Lley:

n >] 3

anti-potencial[ E_{e}(r,r,r) ] = 3q·(a_{n}·r^{n})·k_{e}

div[ E_{e}(r,r,r) ] = 3·d_{rrr}^{3}[q·(a_{n}·r^{n})·(1/(n·(n+(-1))·(n+(-2))))]·k_{e}

Lley:

anti-potencial[ E_{e}(r,r,r) ] = 3q·(a_{n}·r^{(-n)})·k_{e}

div[ E_{e}(r,r,r) ] = 3·d_{rrr}^{3}[q·(a_{n}·r^{(-n)})·(1/((-n)·(n+1)·(n+2)))]·k_{e}


Ecuacions de fluxe-zero para un rectangle cúbic:

Lley:

anti-potencial[ rot[ E_{e}(ra,rb,rc) ] ] = ...

... qk_{e}+...

... (1/3)·anti-potencial[ ( 1/(abc) )·int[ B_{e}(ra,rb,rc) ]d[t] ]

anti-potencial[ rot[ B_{e}(ra,rb,rc) ] ] = ...

... d_{t}[q(t)]·k_{e}+...

... (-1)·(1/3)·anti-potencial[ ( 1/(abc) )·d_{t}[ E_{e}(ra,rb,rc,q(t)) ] ]+...

... (-1)·(1/3)·anti-potencial[ ( 1/(abc) )·B_{e}(ra,rb,rc,q(t)) ]

Lley:

rot[ E_{e}(ra,rb,rc) ] = ...

... H_{e}(ra,rb,rc)+(1/3)·( 1/(abc) )·int[ B_{e}(ra,rb,rc) ]d[t]

rot[ B_{e}(ra,rb,rc) ] = ...

... J_{e}(ra,rb,rc,q(t))+...

... (-1)·(1/3)·( 1/(abc) )·d_{t}[ E_{e}(ra,rb,rc,q(t)) ]+...

... (-1)·(1/3)·( 1/(abc) )·B_{e}(ra,rb,rc,q(t))

Lley:

H_{e}(ra,rb,rc) = ...

... rot[ E_{e}(ra,rb,rc) ]+(1/3)·qk_{e}·(1/r^{2})·( 1/(abc) )·< a,b,c >

J_{e}(ra,rb,rc,q(t)) = ...

... rot[ B_{e}(ra,rb,rc) ]+(1/3)·d_{t}[q(t)]·k_{e}·(1/r^{2})·( 1/(abc) )·< a,b,c >


Lley:

Vectors de inducció en un cub:

H_{e}(rd,rd,rd) = ...

... rot[ E_{e}(rd,rd,rd) ]+(1/3)·qk_{e}·(1/r^{2})·( 1/d^{2} )·< 1,1,1 >

J_{e}(rd,rd,rd,q(t)) = ...

... rot[ B_{e}(rd,rd,rd) ]+(1/3)·d_{t}[q(t)]·k_{e}·(1/r^{2})·( 1/d^{2} )·< 1,1,1 >


Ecuacions de fluxe-zero para un cilindre:

Lley:

anti-potencial[ rot[ E_{e}(r·cos(s),r·sin(s),r·h) ] ] = ...

... qk_{e}+...

... (1/3)·anti-potencial[ ( 1/(cos(s)·sin(s)·h) )·int[ B_{e}(r·cos(s),r·sin(s),r·h) ]d[t] ]

anti-potencial[ rot[ B_{e}(r·cos(s),r·sin(s),r·h) ] ] = ...

... d_{t}[q(t)]·k_{e}+...

... (-1)·(1/3)·anti-potencial[ (1/(cos(s)·sin(s)·h))·d_{t}[ E_{e}(r·cos(s),r·sin(s),r·h,q(t)) ] ]+...

... (-1)·(1/3)·anti-potencial[ (1/(cos(s)·sin(s)·h))·B_{e}(r·cos(s),r·sin(s),r·h,q(t)) ]

Lley:

rot[ E_{e}(r·cos(s),r·sin(s),r·h) ] = ...

... H_{e}(r·cos(s),r·sin(s),r·h)+...

... (1/3)·( 1/(cos(s)·sin(s)·h) )·int[ B_{e}(r·cos(s),r·sin(s),r·h) ]d[t]

rot[ B_{e}(r·cos(s),r·sin(s),r·h) ] = ...

... J_{e}(r·cos(s),r·sin(s),r·h,q(t))+...

... (-1)·(1/3)·( 1/(cos(s)·sin(s)·h) )·d_{t}[ E_{e}(r·cos(s),r·sin(s),r·h,q(t)) ]+...

... (-1)·(1/3)·( 1/(cos(s)·sin(s)·h) )·B_{e}(r·cos(s),r·sin(s),r·h,q(t))


Lley:

Vectors de inducció en els eishos de coordenades de un cilindre que no existeishen:

s = 0+2pi·k <==> ( [1] & [2] )

[1] H_{e}(r,0,r·h) = ...

... rot[ E_{e}(r,0,r·h) ]+(1/3)·qk_{e}·(1/r^{2})·(1/h)·< oo,1,oo·h >

[2] J_{e}(r,0,r·h,q(t)) = ...

... rot[ B_{e}(r,0,r·h) ]+(1/3)·d_{t}[q(t)]·k_{e}·(1/r^{2})·(1/h)·< oo,1,oo·h >

s = pi+2pi·k <==> ( [1] & [2] )

[1] H_{e}((-r),0,r·h) = ...

... rot[ E_{e}((-r),0,r·h) ]+(-1)·(1/3)·qk_{e}·(1/r^{2})·(1/h)·< (-oo),1,oo·h >

[2] J_{e}((-r),0,r·h,q(t)) = ...

... rot[ B_{e}((-r),0,r·h) ]+(-1)·(1/3)·d_{t}[q(t)]·k_{e}·(1/r^{2})·(1/h)·< (-oo),1,oo·h >

s = (pi/2)+2pi·k <==> ( [1] & [2] )

[1] H_{e}(0,r,r·h) = ...

... rot[ E_{e}(0,r,r·h) ]+(1/3)·qk_{e}·(1/r^{2})·(1/h)·< 1,oo,oo·h >

[2] J_{e}(0,r,r·h,q(t)) = ...

... rot[ B_{e}(0,r,r·h) ]+(1/3)·d_{t}[q(t)]·k_{e}·(1/r^{2})·(1/h)·< 1,oo,oo·h >

s = (-1)·(pi/2)+2pi·k <==> ( [1] & [2] )

[1] H_{e}(0,(-r),r·h) = ...

... rot[ E_{e}(0,(-r),r·h) ]+(-1)·(1/3)·qk_{e}·(1/r^{2})·(1/h)·< 1,(-oo),oo·h >

[2] J_{e}(0,(-r),r·h,q(t)) = ...

... rot[ B_{e}(0,(-r),r·h) ]+(-1)·(1/3)·d_{t}[q(t)]·k_{e}·(1/r^{2})·(1/h)·< 1,(-oo),oo·h >

lunes, 31 de enero de 2022

evangelio stronikián y física

Tenemos 3 panes y 2 peces,

que no son pares pan-pez,

y vamos a tener más de 3 pares pan-pez.

No tenemos 3 panes o 2 peces,

que son pares pan-pez,

y no vamos a tener más de 3 pares pan-pez.


tenemos 3 panes y 3 peces.

tenemos 2 panes y 2 peces.

tenemos 1 pan y 1 pez.


Lley:

Sea A(x,y) un hombre que está de pié y está inclinado,

y sea F la fuerza de resistencia del suelo del pié al centro de masas:

m·d_{tt}^{2}[y] = (-1)·qg+F·cos(s)

m·d_{tt}^{2}[x] = F·sin(s)+(-1)·k·F·cos(s)

A(x,y) está en equilibri <==> ( tan(s) [< k & F = ( (qg)/cos(s) ) )

Deducció:

Sea cos(s) > 0

F·cos(s) = qg

F = ( (qg)/cos(s) )

F·sin(s) [< k·F·cos(s)

sin(s) [< k·cos(s)

tan(s) [< k


Lley:

Sea A(x,y) una caja en un plano inclinado,

y sea F la fuerza de resistencia del suelo:

m·d_{tt}^{2}[y] = (-1)·qg·cos(s)+F

m·d_{tt}^{2}[x] = qg·sin(s)+(-1)·k·F

A(x,y) está en equilibri <==> ( tan(s) [< k & F = qg·cos(s) )

Deducció:

Sea cos(s) > 0

F = qg·cos(s)

qg·sin(s) [< k·F

qg·sin(s) [< k·qg·cos(s)

sin(s) [< k·cos(s)

tan(s) [< k


Lley:

Sea A(x,y) una caja en lo plano y una caja colgada de una polea,

y sea F la fuerza de resistencia del suelo con la caja del plano:

m_{1}·d_{tt}^{2}[y] = (-1)·qg+F

(m_{1}+m_{2})·d_{tt}^{2}[x] = pg+(-1)·k·F

A(x,y) está en equilibri <==> ( (p/q) [< k & F = qg )

T = ( (p·m_{1}+kq·m_{2})/(m_{1}+m_{2}) )·g


protón:

m = (0.9)·uma

neutrón:

m = (0.9)·uma

electrón:

m = (0.2)·uma

Átomo de hidrógeno:

m = 2 uma

1 mol de hidrógeno tiene masa 2 Kg.

1 Kg = 10^{23} uma

1 g = 10^{20} uma

quark:

m = (0,3) uma


Potencial de fusión nuclear:

E(t)·e^{(-1)}+E(t)·e^{(-1)} = 2·E(t)·e^{(-1)} = 2·E(t)·e^{(-2)}+G_{2}(t)

2·E(t)·e^{(-2)}+2·E(t)·e^{(-2)} = 4·E(t)·e^{(-2)} = 4·E(t)·e^{(-4)}+G_{4}(t)

G_{2}(t) = 2·E(t)·e^{(-2)}( e+(-1) )

G_{4}(t) = 4·E(t)·e^{(-4)}( e^{2}+(-1) )


Ecuacions de Maxwell electro-magnétiques en un cub:

Principi:

E_{e}(x,y,z) = qk_{e}·(1/r^{2})·(< x,y,z >/r)

B_{e}(x,y,z) = (-1)·qk_{e}·(1/r^{2})·(< d_{t}[x],d_{t}[y],d_{t}[z] >/r)

Lley:

anti-potencial[ E_{e}(r,r,r) ] = 3qk_{e}

anti-potencial[ B_{e}(r,r,r) ] = (-0)

Lley:

anti-potencial[ rot[ E_{e}(x,y,z) ] ] = ...

... qk_{e}+int[ anti-potencial[ B_{e}(r,r,r) ] ]d[t]

anti-potencial[ rot[ B_{e}(x,y,z) ] ] = ...

... d_{t}[q(t)]·k_{e}+(-1)·(1/3)·d_{t}[ anti-potencial[ E_{e}(r,r,r,q(t)) ] ]

Lley:

rot[ E_{e}(x,y,z) ] = H_{e}(x,y,z)+int[ B_{e}(r,r,r) ]d[t]

rot[ B_{e}(x,y,z) ] = J_{e}(x,y,z,q(t))+(-1)·(1/3)·d_{t}[ E_{e}(r,r,r,q(t)) ]

Lley:

H_{e}(x,y,z) = rot[ E_{e}(x,y,z) ]+qk_{e}·(1/r^{2})·< 1,1,1 >

J_{e}(x,y,z,q(t)) = rot[ B_{e}(x,y,z) ]+(1/3)·d_{t}[q(t)]·k_{e}·(1/r^{2})·< 1,1,1 >

Lley:

Si ( E_{e}(x,y,z) = 0 & hi ha inducció magnética ) ==> ...

... hi ha cárrega. [ T = R·q ]

Si ( B_{e}(x,y,z) = 0 & hi ha corrent de desplaçament de diferencia de cárrega ) ==> ...

... hi ha intensitat del corrent. [ A = R·d_{t}[q(t)] ]

Lley:

m·d_{tt}^{2}[x] = p·( E_{e}(x)+int[ B_{e}(x) ]d[t] )

x(t) = vt


Ecuacions de Maxwell gravito-magnétiques en un cub:

Principi:

E_{g}(x,y,z) = (-1)·qk_{g}·(1/r^{2})·(< x,y,z >/r)

B_{g}(x,y,z) = qk_{g}·(1/r^{2})·(< d_{t}[x],d_{t}[y],d_{t}[z] >/r)

Lley:

anti-potencial[ E_{g}(r,r,r) ] = (-3)·qk_{g}

anti-potencial[ B_{g}(r,r,r) ] = 0

Lley:

anti-potencial[ rot[ E_{g}(x,y,z) ] ] = ...

... qk_{g}+(-1)·int[ anti-potencial[ B_{g}(r,r,r) ] ]d[t]

anti-potencial[ rot[ B_{g}(x,y,z) ] ] = ...

.. d_{t}[q(t)]·k_{g}+(1/3)·d_{t}[ anti-potencial[ E_{g}(r,r,r,q(t)) ] ]

Lley:

rot[ E_{g}(x,y,z) ] = H_{g}(x,y,z)+(-1)·int[ B_{g}(r,r,r) ]d[t]

rot[ B_{g}(x,y,z) ] = J_{g}(x,y,z,q(t))+(1/3)·d_{t}[ E_{g}(r,r,r,q(t)) ]

Lley:

H_{g}(x,y,z) = rot[ E_{g}(x,y,z) ]+qk_{g}·(1/r^{2})·< 1,1,1 >

J_{g}(x,y,z,q(t)) = rot[ B_{g}(x,y,z) ]+(1/3)·d_{t}[q(t)]·k_{g}·(1/r^{2})·< 1,1,1 >

Lley:

m·d_{tt}^{2}[x] = p·( E_{g}(x)+int[ B_{g}(x) ]d[t] )

x(t) = vt