m·d_{tt}^{2}[x(t)] = ...
... k·pq·( ( (e^{ln(a)·x}+(-1)cos(x))/x )+(-1)( (e^{ln(a)·(d_{t}[x]·t)}+(-1)cos(d_{t}[x]·t))/(d_{t}[x]·t) ) )
x(t) = Vt
sábado, 14 de marzo de 2020
geofísica magneto-exponencial-cosinus
B( d_{t}[x]·t , d_{t}[y]·t , d_{t}[z]·t ) = (-1)·qk·< ...
... ( (e^{ln(a)·(d_{t}[x]·t)}+(-1)cos(d_{t}[x]·t))/(d_{t}[x]·t) ) , ...
... ( (e^{ln(a)·(d_{t}[y]·t)}+(-1)cos(d_{t}[y]·t))/(d_{t}[y]·t) ) , ...
... ( (e^{ln(a)·(d_{t}[z]·t)}+(-1)cos(d_{t}[z]·t))/(d_{t}[z]·t) ) >
B(0,0,0) = qk·< ln(a) , ln(a) , ln(a) >
geofísica exponencial-cosinus
E(x,y,z ) = qk·< ( (e^{ln(a)·x}+(-1)cos(x))/x ),( (e^{ln(a)·y}+(-1)cos(y))/y ),( (e^{ln(a)·z}+(-1)cos(z))/z ) >
E(0,0,0) = qk·< ln(a) , ln(a) , ln(a) >
viernes, 13 de marzo de 2020
genética ojos y orejas
(1/(2k+1)!)·x^{2k+1} & (1/(2k)!)·x^{2k}
TACCCCCCATTACCCCCCCAT
TACCCCCCCCCCATTACCCCCCCCCCAT
TACCCCCCCCCCAT
TACCCCCCCCCCCATTACCCCCCCCCCAT
TACCCCCCATTACCCCCCCAT
TACCCCCCCCCCATTACCCCCCCCCCAT
TACCCCCCCCCCAT
TACCCCCCCCCCCATTACCCCCCCCCCAT
genética de centro de cerebro o corazón
TACCCCCCATTACCCCCCCAT
TACCCCCCCATTACCCCCCCCAT
TACCCCCCCAT
TACCCCCCCCATTACCCCCCCAT
TACCCCCCCATTACCCCCCAT
virus-de-centro:
TACCCCCCATTACCCCCCCAT
TACCCCCCCATTACCCCCCCCAT
TACCCAT
TACCCCCCCCATTACCCCCCCAT
TACCCCCCCATTACCCCCCAT
TACCCCCCCATTACCCCCCCCAT
TACCCCCCCAT
TACCCCCCCCATTACCCCCCCAT
TACCCCCCCATTACCCCCCAT
virus-de-centro:
TACCCCCCATTACCCCCCCAT
TACCCCCCCATTACCCCCCCCAT
TACCCAT
TACCCCCCCCATTACCCCCCCAT
TACCCCCCCATTACCCCCCAT
genética termologia
g(x,t) = nt^{n+(-1)}x^{n+(-2)} & f(x,t) = x^{n}t^{n+(-1)}
ecuació del calor generalitzada:
d_{xx}[f(x,t)] = d_{t}[g(x,t)]
TACCCCCCATTACCCCCCCAT
TACCCCCCCATTACCCCCCCCAT
TACCCCCCCCATTACCCCCCCCCAT
TACCCCCCCCCATTACCCCCCCCCCAT
ecuació del calor generalitzada:
d_{xx}[f(x,t)] = d_{t}[g(x,t)]
TACCCCCCATTACCCCCCCAT
TACCCCCCCATTACCCCCCCCAT
TACCCCCCCCATTACCCCCCCCCAT
TACCCCCCCCCATTACCCCCCCCCCAT
martes, 10 de marzo de 2020
psíquica: esclavos-noide
esclavos-noide
destrucción del alma.
Asegurada la reencarnación.
No extinción como un esclavo de solo cuerpo
destrucción del alma.
Asegurada la reencarnación.
No extinción como un esclavo de solo cuerpo
lunes, 9 de marzo de 2020
teoría de cordes: acció 3x3
acción de 3x3
E F E
F G F
E F E
G F G
F E F
G F G
(1/2)( S(u,v) )^{2} = ∬ [ GGGGE+(-1)FFFFE ] d[u]d[v]+∬ [ EEEEG+(-1)FFFFG ] d[u]d[v]
x(u,v) = f(h)·( e^{iu}+e^{iv} )
d_{u}[x(u,v)] = f(h)·ie^{iu}
d_{v}[x(u,v)] = f(h)·ie^{iv}
(1/2)( S(u,v) )^{2} = ...
... ( f(h) )^{10}·( ...
... ∬ [ (-1)·e^{2iu+8iv}+e^{4i(u+v)+2iu} ] d[u]d[v]+...
... ∬ [ (-1)·e^{2iv+8iu}+e^{4i(u+v)+2iv} ] d[u]d[v] ...
... )
(1/2)( S(u,v) )^{2} = ...
... ( f(h) )^{10}·( ...
... (1/16)·e^{2iu+8iv}+(-1)·(1/24)·e^{4i(u+v)+2iu}+...
... (1/16)·e^{2iv+8iu}+(-1)·(1/24)·e^{4i(u+v)+2iv} ...
... )
domingo, 8 de marzo de 2020
ones eletro-magnétiques exponencials
m·d_{tt}^{2}[x(t)] = k·pq·( (e^{ln(a)·x}+(-1))/x )+(-1)·( (e^{ln(a)·(d_{t}[x]·t)}+(-1))/(d_{t}[x]·t) )
x(t) = Vt
geofísica magneto-exponencial
B( d_{t}[x]·t , d_{t}[y]·t , d_{t}[z]·t ) = (-1)·qk·< ...
... ( (e^{ln(a)·(d_{t}[x]·t)}+(-1))/(d_{t}[x]·t) ) , ...
... ( (e^{ln(a)·(d_{t}[y]·t)}+(-1))/(d_{t}[y]·t) ) , ...
... ( (e^{ln(a)·(d_{t}[z]·t)}+(-1))/(d_{t}[z]·t) ) >
B(0,0,0) = qk·< ln(a) , ln(a) , ln(a) >
ecuació integral
∫ [a--->x]-[ d_{x}[f(x)] ] d[x]+n·f(x) = (n+1)·∫ [a--->x]-[ d_{x}[f(x)] ] d[x]
f(x) = (x+(-a))
f(x) = (x+(-a))
zero de funció
Si f(x) = (x+(-a))+(x+(-b)) ==> [∃c][ c€[a+s,b+(-s)]_{K} & f(c) = 0 ]
f(a+s) = (-1)·f(b+(-s))
f(b+(-s)) = (-1)·f(a+s)
Si s = ( (b+(-a))/2 ) ==> f( (a+b)/2 ) = 0
Si f(x) = ( s/(x+(-a)) )+( s/(x+(-b)) ) ==> [∃c][ c€[a+s,b+(-s)]_{K} & f(c) = 0 ]
f(a+s) = (-1)·f(b+(-s))
f(b+(-s)) = (-1)·f(a+s)
Si s = ( (b+(-a))/2 ) ==> f( (a+b)/2 ) = 0
Si f(x) = (x+(-1)·a_{1})+...(n)...+(x+(-1)·a_{n}) ==> f( (a_{1}+...(n)...+a_{n})/n ) = 0
0 = nx+(-1)( a_{1}+...(n)...+a_{n} )
a_{1}+...(n)...+a_{n} = nx
f(a+s) = (-1)·f(b+(-s))
f(b+(-s)) = (-1)·f(a+s)
Si s = ( (b+(-a))/2 ) ==> f( (a+b)/2 ) = 0
Si f(x) = ( s/(x+(-a)) )+( s/(x+(-b)) ) ==> [∃c][ c€[a+s,b+(-s)]_{K} & f(c) = 0 ]
f(a+s) = (-1)·f(b+(-s))
f(b+(-s)) = (-1)·f(a+s)
Si s = ( (b+(-a))/2 ) ==> f( (a+b)/2 ) = 0
Si f(x) = (x+(-1)·a_{1})+...(n)...+(x+(-1)·a_{n}) ==> f( (a_{1}+...(n)...+a_{n})/n ) = 0
0 = nx+(-1)( a_{1}+...(n)...+a_{n} )
a_{1}+...(n)...+a_{n} = nx
funció continua
teorema:
Si |f(x)| [< |x| ==> f(x) és continua en x = 0
demostració:
sigui s > 0 ==>
|f(x)+(-1)f(0)| [< |x|+|0| = |x| < s
teorema:
Si |f(x)| [< |x+(-a)| ==> f(x) és continua en x = a
demostració:
sigui s > 0 ==>
|f(x)+(-1)f(a)| [< |x+(-a)|+|0| = |x+(-a)| < s
teorema:
Si |f(x)| [< |x+a| ==> f(x) és continua en x = (-a)
demostració:
sigui s > 0 ==>
|f(x)+(-1)f(-a)| [< |x+a|+|0| = |x+a| < s
Si |f(x)| [< |x| ==> f(x) és continua en x = 0
demostració:
sigui s > 0 ==>
|f(x)+(-1)f(0)| [< |x|+|0| = |x| < s
teorema:
Si |f(x)| [< |x+(-a)| ==> f(x) és continua en x = a
demostració:
sigui s > 0 ==>
|f(x)+(-1)f(a)| [< |x+(-a)|+|0| = |x+(-a)| < s
teorema:
Si |f(x)| [< |x+a| ==> f(x) és continua en x = (-a)
demostració:
sigui s > 0 ==>
|f(x)+(-1)f(-a)| [< |x+a|+|0| = |x+a| < s
derivació logarítmica
f(x) = ( g(x) )^{h(x)}
ln(f(x)) = h(x)·ln(g(x))
d_{x}[f(x)] = f(x)·d_{x}[h(x)·ln(g(x))]
d_{x}[f(x)] = f(x)·( d_{x}[h(x)]·ln(g(x))+h(x)·(d_{x}[g(x)]/g(x)) )
ln(f(x)) = h(x)·ln(g(x))
d_{x}[f(x)] = f(x)·d_{x}[h(x)·ln(g(x))]
d_{x}[f(x)] = f(x)·( d_{x}[h(x)]·ln(g(x))+h(x)·(d_{x}[g(x)]/g(x)) )
corolari del valor mitx
Si ( f(0) = 0 & f(1) = 0 & d_{x}[f(x)] és creishent ==> ...
... [∀x][ x€(0,1)_{K} ==> ( f(x)/x ) és creishent ]
sigui 0 < x [< y < 1 ==>
[∃c][ 0 [< c [< x ] & [∃b][ y [< b [< 1 ]
(f(x)/x) = ( (f(x)+(-1)f(0))/(x+(-0)) ) = d_{x}[f(c)] [< d_{x}[f(x)] [< ...
... d_{y}[f(y)] [< d_{y}[f(b)] = ( (f(1)+(-1)f(y))/(1+(-y)) ) [< ( f(y)/y )
0 [< 1
(-y) [< 1+(-y)
f(x) = x·(x+(-1))
d_{x}[f(x)] = 2x+(-1)
(f(x)/x) = x+(-1)
corolari del valor mitx
Si ( f(0) = 0 & [∀x][ d_{x}[f(x)] [< f(x) ] & f(x) es creishent ==> ...
... [∀x][ x€(0,1)_{K} ==> f(x) = 0 ]
(f(x)/x) = ( (f(x)+(-1)f(0))/(x+(-0)) ) = d_{x}[f(c)] [< d_{x}[f(x)] [< f(x) [< ( f(x)/x )
( f(x)/x ) = f(x) ==> f(x) = 0
... [∀x][ x€(0,1)_{K} ==> f(x) = 0 ]
(f(x)/x) = ( (f(x)+(-1)f(0))/(x+(-0)) ) = d_{x}[f(c)] [< d_{x}[f(x)] [< f(x) [< ( f(x)/x )
( f(x)/x ) = f(x) ==> f(x) = 0
Suscribirse a:
Entradas (Atom)