sábado, 17 de agosto de 2024
geometría-diferencial y teoría-cuántica-de-Gauge-y-teoría-M y relatividad-y-teoría-de-cuerdas y desintegraciones-débil y integrales
lunes, 12 de agosto de 2024
mecánica-física y Álgebra-lineal y evangelio-stronikiano-y-Caos y arte-matemático y geometría-diferencial-y-teoría-de-cuerdas
Ley: [ de polea estirando con el mismo peso Grúas Móvil Cranes ]
m·d_{tt}^{2}[y] = qg·( 1+(-1)·( y/( d^{2}+y^{2} )^{(1/2)} ) )
Si d = 0 ==> d_{tt}^{2}[y] = 0
(m/2)·d_{t}[y]^{2} = qgd·( (y/d)+(-1)·( 1+(y/d)^{2} )^{(1/2)} )
y(t) = ...
... d·Anti-[ ( s /o(s)o/ ( (1/2)·s^{2}+(-1)·(1/3)·( 1+s^{2} )^{(3/2)} [o(s)o] ln(s) ) )^{[o(s)o] (1/2)} ]-( ...
... ( (2/m)·qgd )^{(1/2)}·(1/d)·t )
Caos:
Reflector de imagen delantero.
Espejo.
Anti-reflector de imagen trasero.
Cristal.
Algoritmo: [ de Jordan ]
Sea F(x,y) = ( < a,b >,< c,d > ) o < x,y > ==>
| < a+(-s),b >,< c,d+(-s) > | = 0
u(s) = < j,k >
v = < x,y >
< j,k > o < x,y > = (1/b)
Teorema:
Sea F(x,y) = ( < a,a >,< a,a > ) o < x,y > ==>
[EX][EY][ Y o ( < a,a >,< a,a > ) o X = ( < 0,1 >,< 0,2a > ) ]
Demostración:
| < a+(-s),a >,< a,a+(-s) > | = 0
Sea s = 0 ==>
u(0) = < 1,(-1) >
v = < x,y >
X = ( < 1,x >,< (-1),y > )
Y = ( < y,(-x) >,< 1,1 > )· ( 1/(y+x) )
Y o ( < a,a >,< a,a > ) o X = ( < 0,1 >,< 0,2a > )
y = ( (1/a)+x )
Teorema:
Sea F(x,y) = ( < a,a >,< a,a > ) o < x,y > ==>
[EX][EY][ Y o ( < a,a >,< a,a > ) o X = ( < 2a,1 >,< 0,0 > ) ]
Demostración:
| < a+(-s),a >,< a,a+(-s) > | = 0
Sea s = 2a ==>
u(2a) = < 1,1 >
v = < x,y >
X = ( < 1,x >,< 1,y > )
Y = ( < y,(-x) >,< (-1),1 > )· ( 1/(y+(-x)) )
Y o ( < a,a >,< a,a > ) o X = ( < 2a,1 >,< 0,0 > )
y = ( (1/a)+(-x) )
540 años en el Cielo Inglés:
Dual: [ Tabernacles Party ]
The-he that [ need liquid combustible ]-[ need stare-kate drinking ] that gow to he,
and the-he that bilif in he that [ kirk the gusanel ]-[ drink ].
The-he that [ need solid combustible ]-[ need stare-kate menjjating ] that gow to he,
and the-he that bilif in he that [ kilk the gusanel ]-[ menjjate ].
Dual:
He vare-kate det-sate it-hete and he vare-kate [ fall of the life ]-[ deatrate ].
He not vare-kate det-sate it-hete or he not vare-kate [ fall of the life ]-[ deatrate ].
Dual: [ Magic Kings ]
Varen-kate [ change the space to inter ]-[ intrate to ] the animal-haws
and
varen-kate wotch the sonther of God wizh his mother.
Varen-kate [ connectate the space of ]-[ srake ] his tresors and le varen-kate ofert presents.
Not varen-kate [ change the space to inter ]-[ intrate to ] the animal-haws
and
varen-kate wotch the sonther of God wizhawt his mother.
Not varen-kate [ connectate the space of ]-[ srake ] his tresors or not le varen-kate ofert presents.
Dual:
All the-hies that haveren-kate [ falled of the life ]-[ deatrated ]
haveren-kate to havere-kate scutched the [ pusted of fonems ]-[ speakure ] of God.
All the-hies that haveren-kate [ falled of the life ]-[ deatrated ]
haveren-kate to havere-kate readed the [ pusted of leters ]-[ writure ] of God.
Juan:
El que nace del espíritu,
y Jesucristo lo bautiza,
tiene vida psíquica cristiana en él,
en la ascensión al Cielo.
El que nace del agua,
y Juan lo bautiza,
tiene vida física cristiana en él,
en la des-ascensión del Cielo.
Caos:
Yu reg a pine outer the test,
not pusting fonems of it-hete.
Yu reg a pine inter the test,
pusting fonems of it-hete.
Yu plant a pine outer the test,
not pusting leters of it-hete.
Yu plant a pine inter the test,
pusting leters of it-hete.
I connectate the spaces of the window,
becose stare-kate up the termometer.
I des-connectate the spaces of the window,
becose stare-kate dawn the termometer.
y-dup [o] adalto [o] adalt
y-dawn [o] abajo [o] abaix
Derecho constitucional de Moisés:
No expandirás las fronteras en la Luz que te ha diedo o datxnado Dios,
no siendo próximo de diferente territorio geográfico.
Expandirás las fronteras en el Caos que te ha diedo o datxnado Dios,
siendo próximo de diferente territorio geográfico.
Derecho constitucional de Jesucristo:
El que se irrite con su hermano en la Luz será llevado a juicio,
no siendo prójimo del mismo territorio geográfico.
El que no se irrite con su hermano en el Caos será llevado a juicio,
siendo prójimo del mismo territorio geográfico.
Teorema:
Sea F(x,y) = ( < a,b >,< b,a > ) o < x,y >
[EX][EY][ Y o ( < a,b >,< b,a > ) o X = ( < a+(-b),1 >,< 0,a+b > ) ]
Demostración:
| < a+(-s),b >,< b,a+(-s) > | = 0
Sea s = a+(-b) ==>
u(a+(-b)) = < 1,(-1) >
v = < x,y >
X = ( < 1,x >,< (-1),y > )
Y = ( < y,(-x) >,< 1,1> )·( 1/(y+x) )
Y o ( < a,b >,< b,a > ) o X = ( < a+(-b),1 >,< 0,a+b > )
y = (1/b)+x
Examen de álgebra lineal:
Teorema:
Sea E_{+} = { B € M_{nn}(K) : B = A+A^{T} } ==>
Sea E_{-} = { B € M_{nn}(K) : B = A+(-1)·A^{T} } ==>
dim(E_{+}) = (1/2)·( n^{2}+n )
dim(E_{-}) = (1/2)·( n^{2}+(-n) )
Demostración:
(u+v)·A+(u+(-v))·A^{T} = u·( A+A^{T} )+v·( A+(-1)·A^{T} ) = 0
Si u = 0 ==> v·( A+(-1)·A^{T} ) = 0 ==> v = 0
Si v = 0 ==> u·( A+A^{T} ) = 0 ==> u = 0
( u = 0 <==> v = 0 )
Sea u != 0 ==> (u+v)·A+(u+(-v))·A^{T}+(-u)·( A+A^{T} ) = v·( A+(-1)·A^{T} ) = 0 ==> v = 0
( u = 0 & v = 0 )
A = (1/2)·( A+A ) = (1/2)·( A+( A^{T}+(-1)·A^{T} )+A ) = (1/2)·( ( A+A^{T} )+( A+(-1)·A^{T} ) )
M_{nn}(K) = E_{+} [+] E_{-}
Ley:
d_{t}[x] = v·( 1/( (vat)^{n}+e^{nax}·( 1/(ax) ) ) )·(vat)^{n+(-1)}
x(t) = (1/a)·Anti-[ e^{ns}·ln(s) ]-( (1/n)·(vat)^{n} )
Ley:
d_{t}[x] = v·( 1/( (vat)^{n}+e^{nax}·cos(ax) ) )·(vat)^{n+(-1)}
x(t) = (1/a)·Anti-[ e^{ns}·sin(s) ]-( (1/n)·(vat)^{n} )
Ley:
El Cielo es la ascensión con tu cuerpo,
no estando dentro de un infiel,
resurrección de vida.
El Infierno es la ascensión sin tu cuerpo,
estando dentro de un infiel,
resurrección de condenación.
Arte:
[En][ ( (1/m)+1 )·n^{p} = sum[k = 1]-[n][ k ]+O( n^{p} ) ]
[En][ ( (1/m)+1 )·n^{p} = sum[k = 1]-[n][ (1/k) ]+O( n^{p} ) ]
Exposición:
n = 1
0 [< (1/m) [< 1 [< 2
u(k) = (1/n)
v(1/k) = (1/n)
0 [< (1/m)+1+(-1)·(1/n)^{p} [< 2
Arte:
[En][ sum[k = 1]-[n][ k ]+(1/m)·( 1/( n^{p}+(-1) ) ) = O( 1/( n^{p}+(-1) ) ) ]
[En][ sum[k = 1]-[n][ (1/k) ]+(1/m)·( 1/( n^{p}+(-1) ) ) = O( 1/( n^{p}+(-1) ) ) ]
Exposición:
n = 1
0 [< (1/m) [< 1 [< 2
u(k) = (1/n)^{p+1}
v(1/k) = (1/n)^{p+1}
f(0) = s
g(s) = (-1)
0 [< 1 [< 1+(1/m) [< 2
Arte:
[En][ sum[k = 1]-[n][ k ] = (1/m)·n^{p}+O( n^{p} ) ]
[En][ sum[k = 1]-[n][ (1/k) ] = (1/m)·n^{p}+O( n^{p} ) ]
Exposición:
n = 1
0 [< 1+(-1)·(1/m) [< 1
u(k) = n^{p+(-1)}
v(1/k) = n^{p+(-1)}
0 [< 1+(-1)·(1/m) [< 1
Arte:
[En][ sum[k = 1]-[n][ k ]+(1/m)·n^{p} = ( ln(n) )^{p}+O( n^{p} ) ]
[En][ sum[k = 1]-[n][ (1/k) ]+(1/m)·n^{p} = ( ln(n) )^{p}+O( n^{p} ) ]
Exposición:
n = 1
0 [< 1+(1/m) [< 2
u(k) = n^{p+(-1)}
v(1/k) = n^{p+(-1)}
0 [< ( ln(n)/n )^{p} [< 1
0 [< (1/m) [< 1+(1/m)+(-1)·( ln(n)/n )^{p} [< 1+(1/m) [< 2
Definición: [ de primera forma fundamental ]
d[ d[S(u)] ] = d_{u}[f(u,v)]^{2}·d[u]d[u]
d[ d[S(v)] ] = d_{v}[f(u,v)]^{2}·d[v]d[v]
Teorema:
d[ d[ S(u)+S(v) ] ] = ...
... < d[u],d[v] > ...
... o ...
... ( < d_{u}[f(u,v)]^{2},0 >,< 0,d_{v}[f(u,v)]^{2} > ) ...
... o ...
... < d[u],d[v] >
Demostración:
d[ d[ S(u)+S(v) ] ] = d[ d[S(u)]+d[S(v)] ] = d[ d[S(u)] ]+d[ d[S(v)] ] = ...
... d_{u}[f(u,v)]·d_{u}[f(u,v)]·d[u]d[u]+d_{v}[f(u,v)]·d_{v}[f(u,v)]·d[v]d[v] = ...
... < d[u],d[v] > ...
... o ...
... ( < d_{u}[f(u,v)]^{2},0 >,< 0,d_{v}[f(u,v)]^{2} > ) ...
... o ...
... < d[u],d[v] >
Teorema:
S(u)+S(v) = int-int[ ...
... < d[u],d[v] > ...
... o ...
... ( < d_{u}[f(u,v)]^{2},0 >,< 0,d_{v}[f(u,v)]^{2} > ) ...
... o ...
... < d[u],d[v] > ]
Demostración:
S(u)+S(v) = int-int[ d[ d[ S(u)+S(v) ] ] ] = int-int[ ...
... < d[u],d[v] > ...
... o ...
... ( < d_{u}[f(u,v)]^{2},0 >,< 0,d_{v}[f(u,v)]^{2} > ) ...
... o ...
... < d[u],d[v] > ]
Teorema:
Sea f(u,v) = g(au)+h(av) ==>
S(u) = ( G(au) )^{[o( (1/2)·(au)^{2} )o] 2}
S(v) = ( H(av) )^{[o( (1/2)·(av)^{2} )o] 2}
Demostración:
S(u) = int-int[ d[ d[S(u)] ] ] = int-int[ d_{u}[f(u,v)]^{2} ]d[u]d[u] = ...
... int-int[ d_{u}[g(au)+h(av)]^{2} ]d[u]d[u] = int-int[ ( d_{u}[g(au)]+d_{u}[h(av)] )^{2} ]d[u]d[u] = ...
... int-int[ ( d_{u}[g(au)]+0 )^{2} ]d[u]d[u] = int-int[ d_{u}[g(au)]^{2} ]d[u]d[u] = ...
... int-int[ d_{au}[g(au)]^{2} ]d[au]d[au] = int[ ( g(au) )^{[o(au)o] 2} ]d[au] = ...
... ( G(au) )^{[o( (1/2)·(au)^{2} )o] 2}
Definición: [ de segunda forma fundamental ]
d[ d[T(u)] ] = d_{uu}^{2}[f(u,v)]·d_{u}[f(u,v)]·u·d[u]d[u]
d[ d[T(v)] ] = d_{vv}^{2}[f(u,v)]·d_{v}[f(u,v)]·v·d[v]d[v]
Teorema:
d[ d[ T(u)+T(v) ] ] = ...
... < d[u],d[v] > ...
... o ...
... ( < d_{uu}^{2}[f(u,v)]·d_{u}[f(u,v)]·u,0 >,< 0,d_{vv}^{2}[f(u,v)]·d_{v}[f(u,v)]·v > ) ...
... o ...
... < d[u],d[v] >
Demostración:
d[ d[ T(u)+T(v) ] ] = d[ d[T(u)]+d[T(v)] ] = d[ d[T(u)] ]+d[ d[T(v)] ] = ...
... d_{uu}^{2}[f(u,v)]·d_{u}[f(u,v)]·u·d[u]d[u]+d_{vv}^{2}[f(u,v)]·d_{v}[f(u,v)]·v·d[v]d[v] = ...
... < d[u],d[v] > ...
... o ...
... ( < d_{uu}^{2}[f(u,v)]·d_{u}[f(u,v)]·u,0 >,< 0,d_{vv}^{2}[f(u,v)]·d_{v}[f(u,v)]·v > ) ...
... o ...
... < d[u],d[v] >
Teorema:
T(u)+T(v) = int-int[ ...
... < d[u],d[v] > ...
... o ...
... ( < d_{uu}^{2}[f(u,v)]·d_{u}[f(u,v)]·u,0 >,< 0,d_{vv}^{2}[f(u,v)]·d_{v}[f(u,v)]·v > ) ...
... o ...
... < d[u],d[v] > ]
Demostración:
T(u)+T(v) = int-int[ d[ d[ T(u)+T(v) ] ] ] = int-int[ ...
... < d[u],d[v] > ...
... o ...
... ( < d_{uu}^{2}[f(u,v)]·d_{u}[f(u,v)]·u,0 >,< 0,d_{vv}^{2}[f(u,v)]·d_{v}[f(u,v)]·v > ) ...
... o ...
... < d[u],d[v] > ]
Teorema:
Sea f(u,v) = g(au)+h(av) ==>
T(u) = (1/2)·( g(au) )^{[o(au)o] 2} [o( (1/2)·(au)^{2} )o] (1/6)·(au)^{3}
T(v) = (1/2)·( h(av) )^{[o(av)o] 2} [o( (1/2)·(av)^{2} )o] (1/6)·(av)^{3}
Teorema:
Se f(u,v) = he^{n·au}+he^{n·av} ==> ...
... S(u) = h^{2}·(1/4)·e^{2n·au}
... T(u) = h^{2}·(au)^{3}·er-h-[2]-[3](2n·au)
Demostración:
int[ h^{2}·an·(1/2)·e^{2n·au} ]d[2n·au] = h^{2}·an·(1/2)·e^{2n·au}
int[ h^{2}·(1/4)·e^{2n·au} ]d[2n·au] = h^{2}·(1/4)·e^{2n·au}
int[ h^{2}·a·( 1/(2n) )^{2}·(2n·au)·e^{2n·au} ]d[2n·au] = h^{2}·a·(au)^{2}·er-h-[2](2n·au)
int[ h^{2}·( 1/(2n) )^{3}·(2n·au)^{2}·er-h-[2](2n·au) ]d[2n·au] = h^{2}·(au)^{3}·er-h-[2]-[3](2n·au)
Muelles de cuerda psíquicos:
(m/2)·d_{t}[u]^{2} = (1/2)·k·S(u)
u(t) = (1/a)·Anti[ ( s /o(s)o/ ( 1/(2n) )·e^{2n·s} )^{[o(s)o] (1/2)} ]-( (1/2)·(k/m)^{(1/2)}·hat ) )
Ley:
(m/2)·d_{t}[u]^{2} = (1/2)·k·T(u)
u(t) = (1/a)·Anti[ ( s /o(s)o/ s^{4}·er-h-[2]-[3]-[4](2n·s) )^{[o(s)o] (1/2)} ]-( (k/m)^{(1/2)}·hat ) )
Proyectiles de cuerda:
Ley:
(m/2)·d_{t}[u]^{2} = qg·( S(u) )^{(1/2)}
u(t) = ...
... (1/a)·Anti[ ( s /o(s)o/ (1/(2n))·e^{2n·s} )^{[o(s)o] (1/4)} ]-( ( (1/2)·(1/m)·(qgh) )^{(1/2)}·at ) )
Ley:
(m/2)·d_{t}[u]^{2} = qg·( T(u) )^{(1/2)}
u(t) = ...
... (1/a)·Anti[ ( s /o(s)o/ s^{4}·er-h-[2]-[3]-[4](2n·s) )^{[o(s)o] (1/4)} ]-( ( (2/m)·(qgh) )^{(1/2)}·at ) )
Teorema:
Se f(u,v) = h·(au)^{n+1}+h·(av)^{n+1} ==> ...
... S(u) = h^{2}·(n+1)^{2}·( 1/(2n+1) )·( 1/(2n+2) )·(au)^{2n+2}
... T(u) = h^{2}·n·(n+1)^{2}·( 1/(2n+1) )·( 1/(2n+2) )·(au)^{2n+2}
Demostración:
int[ h^{2}·(n+1)^{2}·a·(au)^{2n} ]d[au] = h^{2}·(n+1)^{2}·( 1/(2n+1) )·a·(au)^{2n+1}
int[ h^{2}·(n+1)^{2}·( 1/(2n+1) )·(au)^{2n+1} ]d[au] = ...
... h^{2}·(n+1)^{2}·( 1/(2n+1) )·( 1/(2n+2) )·(au)^{2n+2}
int[ h^{2}·n·(n+1)^{2}·a·(au)^{2n} ]d[au] = h^{2}·n·(n+1)^{2}·( 1/(2n+1) )·a·(au)^{2n+1}
int[ h^{2}·n·(n+1)^{2}·( 1/(2n+1) )·(au)^{2n+1} ]d[au] = ...
... h^{2}·n·(n+1)^{2}·( 1/(2n+1) )·( 1/(2n+2) )·(au)^{2n+2}
Definición: [ de primera forma fundamental cruzada ]
d[ d[A(u,v)] ] = d_{u}[f(u,v)]^{2}·(u/v)·d[u]d[v]
d[ d[A(v,u)] ] = d_{v}[f(u,v)]^{2}·(v/u)·d[v]d[u]
Teorema:
d[ d[ A(u,v)+A(v,u) ] ] = ...
... < d[u],d[v] > ...
... o ...
... ( < 0,d_{u}[f(u,v)]^{2}·(u/v) >,< d_{v}[f(u,v)]^{2}·(v/u),0 > ) ...
... o ...
... < d[u],d[v] >
Teorema:
A(u,v)+A(v,u) = int-int[ ...
... < d[u],d[v] > ...
... o ...
... ( < 0,d_{u}[f(u,v)]^{2}·(u/v) >,< d_{v}[f(u,v)]^{2}·(v/u),0 > ) ...
... o ...
... < d[u],d[v] > ]
Ley:
Sea f(u,v) = he^{n·au}+he^{n·bv} ==>
A(u,v) = h^{2}·(au)^{2}·er-h-[2](2n·au)·ln(bv)
A(v,u) = h^{2}·(bv)^{2}·er-h-[2](2n·bv)·ln(au)
(m/2)·( d_{t}[u]^{2}+d_{t}[v]^{2} ) = (1/2)·k·( A(u,v)+A(v,u) )
u(t) = ...
... (1/a)·Anti[ ( ( p || q ) /o(p || q)o/ ( p^{3}·er-h-[2]-[3](2np)·( ln(q)·q+(-q) ) ) )^{[o(p || q)o] (1/2)} ]-( ...
... (k/m)^{(1/2)}·hat )
v(t) = ...
... (1/b)·Anti[ ( ( q || p ) /o(q || p)o/ ( q^{3}·er-h-[2]-[3](2nq)·( ln(p)·p+(-p) ) ) )^{[o(q || p)o] (1/2)} ]-( ...
... (k/m)^{(1/2)}·hbt )
Examen de Geometría diferencial y Teoría de cuerdas:
Ley:
Sea f(u,v) = he^{n·au}+he^{n·bv} ==>
A(u,v) = h^{2}·(au)^{2}·er-h-[2](2n·au)·ln(bv)
A(v,u) = h^{2}·(bv)^{2}·er-h-[2](2n·bv)·ln(au)
(m/2)·( d_{t}[u]^{2}+d_{t}[v]^{2} ) = qg·( ( A(u,v) )^{(1/2)}+( A(v,u) )^{(1/2)} )
Definición: [ de segunda forma fundamental cruzada ]
d[ d[B(u,v)] ] = d_{uu}^{2}[f(u,v)]·d_{v}[f(u,v)]·u·d[u]d[v]
d[ d[B(v,u)] ] = d_{vv}^{2}[f(u,v)]·d_{u}[f(u,v)]·v·d[v]d[u]
Teorema:
d[ d[ B(u,v)+B(v,u) ] ] = ...
... < d[u],d[v] > ...
... o ...
... ( < 0,d_{uu}^{2}[f(u,v)]·d_{v}[f(u,v)]·u >,< d_{vv}^{2}[f(u,v)]·d_{u}[f(u,v)]·v,0 > ) ...
... o ...
... < d[u],d[v] >
Experimento: [ de las 3 dimensiones espaciales psíquicas imaginarias ]
Se junta en el laboratorio un hexágono con un pentágono y se hace pasar un corriente eléctrico,
después se introduce materia por el hexágono y se tiene que volver espectral.
Ley:
El ADN demuestra las 3 dimensiones espaciales psíquicas imaginarias,
y las 2 dimensiones de cuerda que se saben que existen por el avión anti-radar.
Ley:
La 11-ava dimensión no se puede demostrar sin corriente gravitatorio.
y se demuestra con un polígono par.
La 12-ava dimensión no se puede demostrar sin corriente gravitatorio.
y se demuestra con dos polígonos par-impar.
Ley: [ de cardinal de dimensiones eléctricas de la teoría de cuerdas ]
Si ( f(x_{k}) = k & f(t) = 4 ) ==> ...
... sum[k = 1]-[3][ f(x_{k}) ]+f(t) = 10 dimensiones eléctricas
Espacio físico:
< x,y,z > € R x R x R
Espacio psíquico:
< xi,yi,zi > € Ri x Ri x Ri
Tiempo y Tiempo imaginario:
< t,it > € R x Ri
Cuerda luminosa y Cuerda tenebrosa:
< u,v > € C x C
Ley: [ de cardinal de dimensiones gravitatorias de la teoría M ]
Si ( f(x_{k}) = k & f(t) = (-4) ) ==> ...
... sum[k = 1]-[3][ f(x_{k}) ]+f(t) = 2 dimensiones gravitatorias
Híper-espacios y Ascensión al Cielo:
< n,ni > € Z x Zi
Ley:
( 1/( 1+(-1)·(1/c)^{2}·(1/2)·d_{t}[x_{i}]·d_{t}[x_{j}]·R_{ijx}^{x} ) )·...
... m·( d_{t}[x]^{2}+(-1)·(1/2)·d_{t}[x_{i}]·d_{t}[x_{j}]·R_{ijx}^{x} ) = E(t)·f(ax)
x(t) = (1/a)·Anti-[ ( s /o(s)o/ F(s) )^{[o(s)o] ( 1/( 2+(-1)·[2:1] ) )} ]-( ...
... int[ ( (2/m)·E(t)·( 2^{(1/2)}·(ci) )^{(-1)·[2:1]} )^{( 1/( 2+(-1)·[2:1]) )}·a ]d[t] )
Ley:
( 1/( 1+(-1)·(1/c)·(1/2)·d_{t}[x_{k}]·R_{xxk}^{x} ) )·...
... mc·( d_{t}[x]+(-1)·(1/2)·d_{t}[x_{k}]·R_{xxk}^{x} ) = E(t)·f(ax)
x(t) = (1/a)·Anti-[ ( s /o(s)o/ F(s) )^{[o(s)o] ( 1/( 1+(-1)·[1:1] ) )} ]-( ...
... int[ ( (2/(mc))·E(t)·( 2·(-c) )^{(-1)·[1:1]} )^{( 1/( 1+(-1)·[1:1]) )}·a ]d[t] )
Ley:
( 1/( 1+(-1)·(1/c)^{2}·(1/2)·d_{t}[x_{i}]·d_{t}[x_{j}]·R_{ijx}^{x} ) )·...
... m·( d_{t}[x]^{2}+(-1)·(1/2)·d_{t}[x_{i}]·d_{t}[x_{j}]·R_{ijx}^{x} ) = E·f(ax)
x(t) = (1/a)·Anti-[ ( s /o(s)o/ F(s) )^{[o(s)o] ( 1/( 2+(-1)·[2:1] ) )} ]-( ...
... ( (2/m)·E·( 2^{(1/2)}·(ci) )^{(-1)·[2:1]} )^{( 1/( 2+(-1)·[2:1]) )}·at )
Ley:
( 1/( 1+(-1)·(1/c)·(1/2)·d_{t}[x_{k}]·R_{xxk}^{x} ) )·...
... mc·( d_{t}[x]+(-1)·(1/2)·d_{t}[x_{k}]·R_{xxk}^{x} ) = E·f(ax)
x(t) = (1/a)·Anti-[ ( s /o(s)o/ F(s) )^{[o(s)o] ( 1/( 1+(-1)·[1:1] ) )} ]-( ...
... ( (2/(mc))·E·( 2·(-c) )^{(-1)·[1:1]} )^{( 1/( 1+(-1)·[1:1]) )}·at )
Ley:
( 1/( 1+(-1)·(1/c)^{2}·(1/2)·d_{t}[x_{i}]·d_{t}[x_{j}]·R_{ijx}^{x} ) )·...
... m·( d_{t}[x]^{2}+(-1)·(1/2)·d_{t}[x_{i}]·d_{t}[x_{j}]·R_{ijx}^{x} ) = ...
... (1/m)·(qg)^{2}·(1/2)·t^{2}·f(ax)
x(t) = (1/a)·Anti-[ ( s /o(s)o/ F(s) )^{[o(s)o] ( 1/( 2+(-1)·[2:1] ) )} ]-( ...
... ( (1/m)^{2}·(qg)^{2}·(1/3)·t^{3}·( 2^{(1/2)}·(ci) )^{(-1)·[2:1]} )^{[o(t)o] ( 1/( 2+(-1)·[2:1]) )}·a )
Ley:
( 1/( 1+(-1)·(1/c)·(1/2)·d_{t}[x_{k}]·R_{xxk}^{x} ) )·...
... mc·( d_{t}[x]+(-1)·(1/2)·d_{t}[x_{k}]·R_{xxk}^{x} ) = (1/m)·(qg)^{2}·(1/2)·t^{2}·f(ax)
x(t) = (1/a)·Anti-[ ( s /o(s)o/ F(s) )^{[o(s)o] ( 1/( 1+(-1)·[1:1] ) )} ]-( ...
... ( (1/c)·(1/m)^{2}·(qg)^{2}·(1/3)·t^{3}·( 2·(-c) )^{(-1)·[1:1]} )^{[o(t)o] ( 1/( 1+(-1)·[1:1]) )}·a )
Ley: [ de gustos gravitatorios ]
Salado [o] Soso
Ácido [o] Dulce
Picante [o] Amargo
Alcohólico [o] Húmedo
Ley: [ de colores eléctricos ]
Rojo [o] Verde
Azul [o] Taronja
Amarillo [o] Violeta
Blanco [o] Negro
Marrón [o] Gris