d_{x}[y(x)] = (y/x)·( m+x^{m} )
y(x) = x^{m}·e^{(x^{m}/m)}
d_{x}[ e[m]( x^{m}/m ) ] = ( mx^{m+(-1)}+x^{2m+(-1)} )·e^{(x^{m}/m)}
Sigui y(x) = u(x)·x ==>
u(x)+x·d_{x}[u(x)] = mu(x)+x^{m}u(x)
x·d_{x}[u(x)] = ( m+x^{m}+(-1) )·u(x)
ln(u(x)) = (m+(-1))·ln(x)+(x^{m}/m)
y(x) = ( x^{m+(-1)}·e^{(x^{m}/m)} )·x
d_{x}[y(x)] = (y/x)·( 1+a·(y/x)^{m} )
Sigui y(x) = u(x)·x ==>
x·d_{x}[u(x)] = a·( u(x) )^{m+1}
(-1)·(1/m)·(1/a)·( 1/( u(x) )^{m} ) = ln(x)
y(x) = ( ( (-1)·(1/m)·(1/a) )^{(1/m)}·( ln(x) )^{(-1)·(1/m)} )·x
d_{x}[ ( ( (-1)·(1/m)·(1/a) )^{(1/m)}·( ln(x) )^{(-1)·(1/m)} )·x ] = ...
... ( (-1)·(1/m)·(1/a) )^{(1/m)}·( (-1)·(1/m)·( ln(x) )^{(-1)·(1/m)+(-1)}+( ln(x) )^{(-1)·(1/m)} )
d_{x}[y(x)] = (y/x)·( m+( m/ln( x^{m}/m ) ) )
y(x) = x^{m}·ln( x^{m}/m )
d_{x}[ ln[m]( x^{m}/m ) ] = ( mx^{m+(-1)}·ln( x^{m}/m )+mx^{m+(-1)} )
Sigui y(x) = u(x)·x ==>
x·d_{x}[u(x)] = u(x)( (m+(-1))+(m/ln( x^{m}/m )) )
ln(u(x)) = (m+(-1))·ln(x)+ln(ln( x^{m}/m ))
y(x) = x^{m+(-1)}·ln( x^{m}/m )·x