jueves, 23 de enero de 2020
álgebra: ecuacions polinomiques
x^{p}+x^{q} = 0 <==> x = e^{(1/(p+(-q)))·(pi·i)}
x^{[..(1)..[n]..(1)..]} = x^{n}+1
x^{p}+x^{q} = x^{[..(1)..[p+(-q)]..(1)..]+q}
x^{p}+x^{q} = c
x = c^{( 1/( [..(1)..[p+(-q)]..(1)..]+q ) )}
c^{( p/( [..(1)..[p+(-q)]..(1)..]+q ) )}+c^{( q/( [..(1)..[p+(-q)]..(1)..]+q ) )} = ...
c^{( q/( [..(1)..[p+(-q)]..(1)..]+q ) )}( c^{( (p+(-q))/( [..(1)..[p+(-q)]..(1)..]+q ) )}+1 ) = ...
c^{( q/( [..(1)..[p+(-q)]..(1)..]+q ) )}·c^{( [..(1)..[p+(-q)]..(1)..]/( [..(1)..[p+(-q)]..(1)..]+q ) )} = ...
c^{( ( [..(1)..[p+(-q)]..(1)..]+q )/( [..(1)..[p+(-q)]..(1)..]+q ) )} = c
x^{[..(1)..[0]..(1)..]} = 2
x^{[..(1)..[0]..(1)..]} = x^{0}+1 = 2
x^{[..(m)..[0]..(m)..]} = x^{0}+m = m+1
Suscribirse a:
Enviar comentarios (Atom)
No hay comentarios:
Publicar un comentario