jueves, 23 de enero de 2020

álgebra: ecuacions polinomiques


x^{p}+x^{q} = 0 <==> x = e^{(1/(p+(-q)))·(pi·i)}


x^{[..(1)..[n]..(1)..]} = x^{n}+1


x^{p}+x^{q} = x^{[..(1)..[p+(-q)]..(1)..]+q}


x^{p}+x^{q} = c


x = c^{( 1/( [..(1)..[p+(-q)]..(1)..]+q ) )}


c^{( p/( [..(1)..[p+(-q)]..(1)..]+q ) )}+c^{( q/( [..(1)..[p+(-q)]..(1)..]+q ) )} = ...
c^{( q/( [..(1)..[p+(-q)]..(1)..]+q ) )}( c^{( (p+(-q))/( [..(1)..[p+(-q)]..(1)..]+q ) )}+1 ) = ...
c^{( q/( [..(1)..[p+(-q)]..(1)..]+q ) )}·c^{( [..(1)..[p+(-q)]..(1)..]/( [..(1)..[p+(-q)]..(1)..]+q ) )} = ...
c^{( ( [..(1)..[p+(-q)]..(1)..]+q )/( [..(1)..[p+(-q)]..(1)..]+q ) )} = c


x^{[..(1)..[0]..(1)..]} = 2
x^{[..(1)..[0]..(1)..]} = x^{0}+1 = 2


x^{[..(m)..[0]..(m)..]} = x^{0}+m = m+1

No hay comentarios:

Publicar un comentario