ecuació de temperatures:
( R·d_{t}[q(t)] + d_{t}[T(t,x)] )·disk[i][j] = (2pi·r)·d_{xx}^{2}[T(t,x)]·V·disk[i][j]
gravació:
T(t,x) = a·( t+(1/2)·x^{2} )
q(t) = a·( (2pi·r)·(V/R)+(-1) )·t
ecuació de reproducció:
d_{t}[q(t,x)]·disk[i][j] = d_{x}[q(t,x)]·V·disk[i][j]
q(t,x) = a·( Vt+x )
sábado, 28 de marzo de 2020
derivació irracional
d_{x^{(1/n)}}[g( f(x^{(1/n)}) )] = d_{f(x^{(1/n)})}[g( f(x^{(1/n)}) )]·d_{x^{(1/n)}}[f(x^{(1/n)})]
integral irracional
∫ [ ( ax+bx^{(1/2)} )^{n} ] d[x] = ∫ [ ( ax+bx^{(1/2)} )^{n}·( 2x^{(1/2)} ) ] d[x^{(1/2)}] = ...
... ( 1/(n+1) )( ax+bx^{(1/2)} )^{(n+1)} [o( x^{(1/2)} )o] ...
... ( 1/(2a) )·ln( 2ax^{(1/2)}+b ) [o( x^{(1/2)} )o] x
∫ [ ( ax+bx^{(2/3)}+cx^{(1/3)} )^{n} ] d[x] = ...
... ∫ [ ( ax+bx^{(2/3)}+cx^{(1/3)} )^{n}·( 3x^{(2/3)} ) ] d[x^{(1/3)}] = ...
... ( 1/(n+1) )( ax+bx^{(2/3)}+cx^{(1/3)} )^{(n+1)} [o( x^{(1/3)} )o] ...
... ln( 3ax^{(2/3)}+2bx^{(1/3)}+c ) [o( x^{(1/3)} )o] ...
... ( 1/(6a) )·ln( 6ax^{(1/3)}+2b ) [o( x^{(1/3)} )o] x
... ( 1/(n+1) )( ax+bx^{(1/2)} )^{(n+1)} [o( x^{(1/2)} )o] ...
... ( 1/(2a) )·ln( 2ax^{(1/2)}+b ) [o( x^{(1/2)} )o] x
∫ [ ( ax+bx^{(2/3)}+cx^{(1/3)} )^{n} ] d[x] = ...
... ∫ [ ( ax+bx^{(2/3)}+cx^{(1/3)} )^{n}·( 3x^{(2/3)} ) ] d[x^{(1/3)}] = ...
... ( 1/(n+1) )( ax+bx^{(2/3)}+cx^{(1/3)} )^{(n+1)} [o( x^{(1/3)} )o] ...
... ln( 3ax^{(2/3)}+2bx^{(1/3)}+c ) [o( x^{(1/3)} )o] ...
... ( 1/(6a) )·ln( 6ax^{(1/3)}+2b ) [o( x^{(1/3)} )o] x
viernes, 27 de marzo de 2020
dual-italiano-y-dual-italiano-pitxato
si tú tenere dolore de pulmonei y tú estare sin febre,
tú cullire la vacuna del corona-viri.
yo estare cansato de tanta notitxia falsa.
al finale la gente parlare como ella querere.
yo havere escritxeto en dual-italiano pitxato.
yo havere pensato en tuta q-esta cosa del corona-viri y havere reflexionato.
si tú tenetxere dolore de pulmonei y tú estatxere sin febre,
tú cullitxere la vacuna del corona-viri.
yo estatxere cansato de tanta notitxia falsa.
al finale la gente parlatxere como ella queretxere.
yo havetxere escritxeto en dual-italiano pitxato.
yo havetxere pensato en tuta q-esta cosa del corona-viri y havetxere reflexionato.
tú cullire la vacuna del corona-viri.
yo estare cansato de tanta notitxia falsa.
al finale la gente parlare como ella querere.
yo havere escritxeto en dual-italiano pitxato.
yo havere pensato en tuta q-esta cosa del corona-viri y havere reflexionato.
si tú tenetxere dolore de pulmonei y tú estatxere sin febre,
tú cullitxere la vacuna del corona-viri.
yo estatxere cansato de tanta notitxia falsa.
al finale la gente parlatxere como ella queretxere.
yo havetxere escritxeto en dual-italiano pitxato.
yo havetxere pensato en tuta q-esta cosa del corona-viri y havetxere reflexionato.
jueves, 26 de marzo de 2020
producte integral sinus-y-cosinus elíptic
sin[n](x) = ...
... ∑ ( e^{(2/(n+1))·pi·i} )^{k_{1}...k_{n}}·( 1/((2·k_{1}...k_{n})+1)! )·x^{( (2k_{1}...k_{n})+1 )}
cos[n](x) = ...
... ∑ ( e^{(2/(n+1))·pi·i} )^{k_{1}...k_{n}}·( 1/(2·k_{1}...k_{n})! )·x^{(2k_{1}...k_{n})}
d_{x}[sin[n](x)] = cos[n](x)
d_{x}[cos[n](x)] = e^{(2/(n+1))·pi·i}·sin[n](x)
d_{xx}^{2}[sin[n](x)] = e^{(2/(n+1))·pi·i}·sin[n](x)
d_{xx}^{2}[cos[n](x)] = e^{(2/(n+1))·pi·i}·cos[n](x)
( cos[n](x) )^{(n+1)} + ( sin[n](x) )^{(n+1)} = n^{(n+1)}
d_{x}[cos[n](x)]^{(n+1)} + d_{x}[sin[n](x)]^{(n+1)} = n^{(n+1)}
d_{xx}^{2}[cos[n](x)]^{(n+1)} + d_{xx}^{2}[sin[n](x)]^{(n+1)} = n^{(n+1)}
f(x) [o( sin[n](x) )o] sin[n](x) = f(x)
S[n]_{x}[f(x)] = ( d_{x}[f(x)]/( n^{(n+1)}+(-1)·( f(x) )^{(n+1)} )^{(1/(n+1))} )
f(x) [o( cos[n](x) )o] cos[n](x) = f(x)
C[n]_{x}[f(x)] = e^{( (2n)/(n+1) )·pi·i}·( d_{x}[f(x)]/( n^{(n+1)}+(-1)·( f(x) )^{(n+1)})^{(1/(n+1))} )
teorema:
sin[n]( f(x) [o(x)o] g(x) ) = sin[n](f(x)) [o( sin[n](x) )o] sin[n](g(x))
cos[n]( f(x) [o(x)o] g(x) ) = cos[n](f(x)) [o( cos[n](x) )o] cos[n](g(x))
... ∑ ( e^{(2/(n+1))·pi·i} )^{k_{1}...k_{n}}·( 1/((2·k_{1}...k_{n})+1)! )·x^{( (2k_{1}...k_{n})+1 )}
cos[n](x) = ...
... ∑ ( e^{(2/(n+1))·pi·i} )^{k_{1}...k_{n}}·( 1/(2·k_{1}...k_{n})! )·x^{(2k_{1}...k_{n})}
d_{x}[sin[n](x)] = cos[n](x)
d_{x}[cos[n](x)] = e^{(2/(n+1))·pi·i}·sin[n](x)
d_{xx}^{2}[sin[n](x)] = e^{(2/(n+1))·pi·i}·sin[n](x)
d_{xx}^{2}[cos[n](x)] = e^{(2/(n+1))·pi·i}·cos[n](x)
( cos[n](x) )^{(n+1)} + ( sin[n](x) )^{(n+1)} = n^{(n+1)}
d_{x}[cos[n](x)]^{(n+1)} + d_{x}[sin[n](x)]^{(n+1)} = n^{(n+1)}
d_{xx}^{2}[cos[n](x)]^{(n+1)} + d_{xx}^{2}[sin[n](x)]^{(n+1)} = n^{(n+1)}
f(x) [o( sin[n](x) )o] sin[n](x) = f(x)
S[n]_{x}[f(x)] = ( d_{x}[f(x)]/( n^{(n+1)}+(-1)·( f(x) )^{(n+1)} )^{(1/(n+1))} )
f(x) [o( cos[n](x) )o] cos[n](x) = f(x)
C[n]_{x}[f(x)] = e^{( (2n)/(n+1) )·pi·i}·( d_{x}[f(x)]/( n^{(n+1)}+(-1)·( f(x) )^{(n+1)})^{(1/(n+1))} )
teorema:
sin[n]( f(x) [o(x)o] g(x) ) = sin[n](f(x)) [o( sin[n](x) )o] sin[n](g(x))
cos[n]( f(x) [o(x)o] g(x) ) = cos[n](f(x)) [o( cos[n](x) )o] cos[n](g(x))
integral de producte integral logarítmic
∫ [ ( f(x) )^{n} ] L[x] = ...
... ln( (1/(n+1))·( f(x) )^{(n+1)} ) [o( ln(x) )o] ( ln( f(x) ) )^{[o( ln(x) )o)](-1)}
∫ [ ( ax^{2}+bx )^{n} ] L[x] = ...
... ln( (1/(n+1))·( ax^{2}+bx )^{(n+1)} ) [o( ln(x) )o] ln( ( 1/(2a) )·ln(2ax+b) )
∫ [ ( ax^{3}+bx^{2}+cx )^{n} ] L[x] = ...
... ln( (1/(n+1))·( ax^{3}+bx^{2}+cx )^{(n+1)} ) [o( ln(x) )o] ...
... ln( ln(3ax^{2}+2bx+c) ) [o( ln(x) )o] ln( ( 1/(6a) )·ln(6ax+2b) )
... ln( (1/(n+1))·( f(x) )^{(n+1)} ) [o( ln(x) )o] ( ln( f(x) ) )^{[o( ln(x) )o)](-1)}
∫ [ ( ax^{2}+bx )^{n} ] L[x] = ...
... ln( (1/(n+1))·( ax^{2}+bx )^{(n+1)} ) [o( ln(x) )o] ln( ( 1/(2a) )·ln(2ax+b) )
∫ [ ( ax^{3}+bx^{2}+cx )^{n} ] L[x] = ...
... ln( (1/(n+1))·( ax^{3}+bx^{2}+cx )^{(n+1)} ) [o( ln(x) )o] ...
... ln( ln(3ax^{2}+2bx+c) ) [o( ln(x) )o] ln( ( 1/(6a) )·ln(6ax+2b) )
producte integral logarítmic
f(x) [o( ln(x) )o] g(x) = ∫ [ L_{x}[f(x)]·L_{x}[g(x)] ] L[x]
f(x) [o( ln(x) )o] ln(x) = f(x)
f(x) [o( ln(x) )o] ( f(x) )^{[o( ln(x) )o](-1)} = ln(x)
teorema:
ln( f(x) [o(x)o] g(x) ) = ln(f(x)) [o( ln(x) )o] ln(g(x))
demostració
L_{x}[ ln( f(x) [o(x)o] g(x) ) ] = L_{x}[ ln(f(x)) [o( ln(x) )o] ln(g(x)) ]
f(x) [o( ln(x) )o] ln(x) = f(x)
f(x) [o( ln(x) )o] ( f(x) )^{[o( ln(x) )o](-1)} = ln(x)
teorema:
ln( f(x) [o(x)o] g(x) ) = ln(f(x)) [o( ln(x) )o] ln(g(x))
demostració
L_{x}[ ln( f(x) [o(x)o] g(x) ) ] = L_{x}[ ln(f(x)) [o( ln(x) )o] ln(g(x)) ]
derivació logarítmica
L_{x}[f(x)] = e^{f(x)}·d_{x}[f(x)]
L_{x}[c] = 0
L_{x}[x^{n}] = e^{x^{n}}·nx^{(n+(-1))}
L_{x}[ln(x)] = 1
L_{x}[c] = 0
L_{x}[x^{n}] = e^{x^{n}}·nx^{(n+(-1))}
L_{x}[ln(x)] = 1
miércoles, 25 de marzo de 2020
coment
dual-françé:
nus-uá parlems en La Catalong.
vus-uá parleus en La Franç.
dual-italiano:
nui-otri parlem-ti en La Catalonia.
vui-otri parleu-ti en Italia.
coment
dual-françé:
tú pensare-dom si ellus cantare-dom en La Catalong.
tú pensare-dom si elles cantare-dom en La Catalong.
dual-italiano:
tú pensare si elluti cantare-ti en La Catalonia.
tú pensare si elleti cantare-ti en La Catalonia.
tú pensare-dom si ellus cantare-dom en La Catalong.
tú pensare-dom si elles cantare-dom en La Catalong.
dual-italiano:
tú pensare si elluti cantare-ti en La Catalonia.
tú pensare si elleti cantare-ti en La Catalonia.
martes, 24 de marzo de 2020
coment
dual-françé:
él sere-dom moltu-dom catalán.
ella sere-dom moltu-dom catalana.
él sere-dom pocu-dom español.
ella sere-dom pocu-dom española.
dual-italiano:
él sere-ti molto catalano.
ella sere-ti molto catalana.
él sere-ti poco españolo.
ella sere-ti poco española.
él sere-dom moltu-dom catalán.
ella sere-dom moltu-dom catalana.
él sere-dom pocu-dom español.
ella sere-dom pocu-dom española.
dual-italiano:
él sere-ti molto catalano.
ella sere-ti molto catalana.
él sere-ti poco españolo.
ella sere-ti poco española.
lunes, 23 de marzo de 2020
integral de producte integral exponencial
∫ [ e^{( f(x) )^{n}} ] D[x] = e^{ e^{( f(x) )^{n}} } [v(x)v] ( e^{( f(x) )^{n}} )^{[v(x)v](-1)}
integral de producte integral exponencial
∫ [ e^{f(x)} ] D[x] = e^{ e^{f(x)} } [v(x)v] ( e^{f(x)} )^{[v(x)v](-1)}
integral de producte integral exponencial
∫ [ ( f(x) )^{n} ] D[x] = e^{(1/(n+1))·( f(x) )^{(n+1)}} [v(x)v] ( e^{f(x)} )^{[v(x)v](-1)}
∫ [ ( ax^{2}+bx )^{n} ] D[x] = ...
... e^{(1/(n+1))·( ax^{2}+bx )^{(n+1)}} [v(x)v] e^{(1/(2a))·ln(2ax+b)}
∫ [ ( ax^{3}+bx^{2}+cx )^{n} ] D[x] = ...
... e^{(1/(n+1))·( ax^{3}+bx^{2}+cx )^{(n+1)}} [v(x)v] ...
... e^{ln(3ax^{2}+2bx+c)} [v(x)v] e^{(1/(6a))·ln(6ax+2b)}
producte integral exponencial
f(x) [v(x)v] g(x) = ∫ [ D_{x}[f(x)]·D_{x}[g(x)] ] D[x]
( f(x) [v(x)v] g(x) ) [v(x)v] h(x) = f(x) [v(x)v] ( g(x) [v(x)v] h(x) )
∫ [ ( D_{x}[f(x)]·D_{x}[g(x)] )·D_{x}[h(x)] ] D[x] = ∫ [ D_{x}[f(x)]·( D_{x}[g(x)]·D_{x}[h(x)] ) ] D[x]
e^{x} [v(x)v] g(x) = ∫ [ D_{x}[g(x)] ] D[x] = g(x)
f(x) [v(x)v] ( f(x) )^{[v(x)v](-1)} = e^{x}
teorema:
e^{f(x) [o(x)o] g(x)} = e^{f(x)} [v(x)v] e^{g(x)}
demostració:
D_{x}[ e^{f(x) [o(x)o] g(x)} ] = D_{x}[ e^{f(x)} [v(x)v] e^{g(x)} ]
proposició:
e^{x [o(x)o] f(x)} = e^{x} [v(x)v] e^{f(x)}
( f(x) [v(x)v] g(x) ) [v(x)v] h(x) = f(x) [v(x)v] ( g(x) [v(x)v] h(x) )
∫ [ ( D_{x}[f(x)]·D_{x}[g(x)] )·D_{x}[h(x)] ] D[x] = ∫ [ D_{x}[f(x)]·( D_{x}[g(x)]·D_{x}[h(x)] ) ] D[x]
e^{x} [v(x)v] g(x) = ∫ [ D_{x}[g(x)] ] D[x] = g(x)
f(x) [v(x)v] ( f(x) )^{[v(x)v](-1)} = e^{x}
teorema:
e^{f(x) [o(x)o] g(x)} = e^{f(x)} [v(x)v] e^{g(x)}
demostració:
D_{x}[ e^{f(x) [o(x)o] g(x)} ] = D_{x}[ e^{f(x)} [v(x)v] e^{g(x)} ]
proposició:
e^{x [o(x)o] f(x)} = e^{x} [v(x)v] e^{f(x)}
derivació y integració exponencial
D_{x}[f(x)] = lim [h-->0][ (f(x+h)+(-1)·f(x))/(h·f(x)) ] = ( d_{x}[f(x)]/f(x) )
D_{x}[c] = 0
D_{x}[x^{n}] = (n/x)
D_{x}[e^{x}] = 1
D_{x}[a^{x}] = ln(a)
D_{x}[ln(x)] = ( 1/ln(x) )·(1/x)
D_{x}[f(x)+g(x)] = D_{x}[f(x)] + D_{x}[g(x)]
D_{x}[a·f(x)] = D_{x}[f(x)]
D_{x}[f(x)·g(x)] = D_{x}[f(x)]·g(x) + f(x)·D_{x}[g(x)]
D_{x}[ax^{2}+bx+c] = (2ax+b)/(ax^{2}+bx)
∫ [ D_{x}[f(x)] ] d[x] = ln( ∫ [ D_{x}[f(x)] ] D[x] )
e^{ ∫ [ D_{x}[f(x)] ] d[x] } = ∫ [ D_{x}[f(x)] ] D[x]
e^{∫ d[x]} = ∫ D[x] = e^{x}
e^{∫ [(n/x)] d[x]} = ∫ (n/x) D[x]
e^{ln(x^{n})} = x^{n}
e^{∫ [ ln(a) ] d[x]} = ∫ [ ln(a) ] D[x]
e^{ln(a)·x} = a^{x}
e^{∫ [ ( 1/ln(x) )·(1/x) ] d[x]} = ∫ [ ( 1/ln(x) )·(1/x) ] D[x]
e^{ln(ln(x))} = ln(x)
D_{x}[f(g(x))] = d_{g(x)}[f(g(x))]·d_{x}[g(x)]·(1/f(g(x)))
e^{∫ [ x^{n} ] d[x]} = ∫ [ x^{n} ] D[x] = e^{(1/(n+1))·x^{(n+1)}}
D_{x}[ e^{(1/(n+1))·x^{(n+1)}} ] = x^{n}
D_{x}[c] = 0
D_{x}[x^{n}] = (n/x)
D_{x}[e^{x}] = 1
D_{x}[a^{x}] = ln(a)
D_{x}[ln(x)] = ( 1/ln(x) )·(1/x)
D_{x}[f(x)+g(x)] = D_{x}[f(x)] + D_{x}[g(x)]
D_{x}[a·f(x)] = D_{x}[f(x)]
D_{x}[f(x)·g(x)] = D_{x}[f(x)]·g(x) + f(x)·D_{x}[g(x)]
D_{x}[ax^{2}+bx+c] = (2ax+b)/(ax^{2}+bx)
∫ [ D_{x}[f(x)] ] d[x] = ln( ∫ [ D_{x}[f(x)] ] D[x] )
e^{ ∫ [ D_{x}[f(x)] ] d[x] } = ∫ [ D_{x}[f(x)] ] D[x]
e^{∫ d[x]} = ∫ D[x] = e^{x}
e^{∫ [(n/x)] d[x]} = ∫ (n/x) D[x]
e^{ln(x^{n})} = x^{n}
e^{∫ [ ln(a) ] d[x]} = ∫ [ ln(a) ] D[x]
e^{ln(a)·x} = a^{x}
e^{∫ [ ( 1/ln(x) )·(1/x) ] d[x]} = ∫ [ ( 1/ln(x) )·(1/x) ] D[x]
e^{ln(ln(x))} = ln(x)
D_{x}[f(g(x))] = d_{g(x)}[f(g(x))]·d_{x}[g(x)]·(1/f(g(x)))
e^{∫ [ x^{n} ] d[x]} = ∫ [ x^{n} ] D[x] = e^{(1/(n+1))·x^{(n+1)}}
D_{x}[ e^{(1/(n+1))·x^{(n+1)}} ] = x^{n}
domingo, 22 de marzo de 2020
funcions continues
[∀s][ s > 0 ==> lim [h-->0][ |f(x+h)+(-1)f(x)| < s ] ]
x^{n} és continua en R
lim [h-->0][ |(x+h)^{n}+(-1)x^{n}| < s ]
e^{x} és continua en R
lim [h-->0][ |e^{x}·( e^{h}+(-1) )| < s ]
ln(x) és continua en ¬( x = 0 )
lim [h-->0][ |ln(1+(h/x) )| < s ]
ln(x) no és continua en x = 0
lim [h-->0][ |ln(2)| >] s ]
x^{n} és continua en R
lim [h-->0][ |(x+h)^{n}+(-1)x^{n}| < s ]
e^{x} és continua en R
lim [h-->0][ |e^{x}·( e^{h}+(-1) )| < s ]
ln(x) és continua en ¬( x = 0 )
lim [h-->0][ |ln(1+(h/x) )| < s ]
ln(x) no és continua en x = 0
lim [h-->0][ |ln(2)| >] s ]
funció continua
Si |f(x)| [< ln(x) ==> f(x) és continua en x = 1.
Si |f(x)| [< ln( (x/a) ) ==> f(x) és continua en x = a.
Si |f(x)| [< ln( (x/(-a)) ) ==> f(x) és continua en x = (-a).
funció continua
Si |f(x)| [< ln(x+e)+(-1) ==> f(x) és continua en x = 0.
Si |f(x)| [< ln( (x+(-a))+e )+(-1) ==> f(x) és continua en x = a.
Si |f(x)| [< ln( (x+a)+e)+(-1) ==> f(x) és continua en x = (-a).
funció continua
Si |f(x)| [< ln(x+1) ==> f(x) és continua en x = 0.
Si |f(x)| [< ln( (x+(-a))+1 ) ==> f(x) és continua en x = a.
Si |f(x)| [< ln( (x+a)+1) ==> f(x) és continua en x = (-a).
funció continua
Si |f(x)| [< x^{n} ==> f(x) és continua en x = 0.
Si |f(x)| [< (x+(-a))^{n} ==> f(x) és continua en x = a.
Si |f(x)| [< (x+a)^{n} ==> f(x) és continua en x = (-a).
Si |f(x)| [< (x+(-a))^{n} ==> f(x) és continua en x = a.
Si |f(x)| [< (x+a)^{n} ==> f(x) és continua en x = (-a).
funció continua
Si |f(x)| [< e^{ln(a)·x}+(-1) ==> f(x) és continua en x = 0
Si |f(x)| [< e^{ln(a)·(x+(-c))}+(-1) ==> f(x) és continua en x = c
Si |f(x)| [< e^{ln(a)·(x+c)}+(-1) ==> f(x) és continua en x = (-c)
Si |f(x)| [< e^{ln(a)·(x+(-c))}+(-1) ==> f(x) és continua en x = c
Si |f(x)| [< e^{ln(a)·(x+c)}+(-1) ==> f(x) és continua en x = (-c)
Suscribirse a:
Entradas (Atom)