sábado, 25 de enero de 2020

fisica: electro-magnetisme y gravito-magnetisme

H-E_{e}(r) = k_{e,h}q_{e}·( r^{n}/d_{t}[r]^{n} )
H-E_{g}(r) = (-1)·k_{g,h}q_{g}·( r^{n}/d_{t}[r]^{n} )


H-B_{e}(r) = k_{e,h,m}q_{e}·( d_{tt}^{2}[r]^{n}/d_{t}[r]^{n} )
H-B_{g}(r) = (-1)·k_{g,h,m}q_{g}·( d_{tt}^{2}[r]^{n}/d_{t}[r]^{n} )


ones de so sense massa: m=0
camp emisor:
H-E_{e}(r) + H-B_{e}(r) = 0 <==> ...
... r(t)  = ( sinh( e^{(1/n)·(pi·i)}(kq/kq)t )+ cosh( e^{(1/n)·(pi·i)}(kq/kq)t ) )
camp receptor:
H-E_{e}(r) + H-B_{g}(r) = 0 <==> ...
... r(t)  = ( sinh( e^{(1/n)·(2pi·i)}(kq/kq)t )+ cosh( e^{(1/n)·(2pi·i)}(kq/kq)t ) )
camp receptor:
H-E_{g}(r) + H-B_{e}(r) = 0 <==> ...
... r(t)  = ( sinh( e^{(1/n)·(2pi·i)}(kq/kq)t )+ cosh( e^{(1/n)·(2pi·i)}(kq/kq)t ) )
camp emisor:
H-E_{g}(r) + H-B_{g}(r) = 0 <==> ...
... r(t)  = ( sinh( e^{(1/n)·(pi·i)}(kq/kq)t )+ cosh( e^{(1/n)·(pi·i)}(kq/kq)t ) )

No hay comentarios:

Publicar un comentario