sábado, 17 de octubre de 2020

ecuacions diferencials pow-put y e-put y log-put

ln(( h(y) )^{m}+a_{1}) [o(t)o] ...(n)... [o(t)o] ln(( h(y) )^{m}+a_{n}) = vt [o(t)o] ( ( h(y) )^{m} )^{[o(y)o]n}

ln-[o(t)o]-h-put[m]-[a_{1},...,a_{n}](y) = vt

y = h-put[m]-[a_{1},...,a_{n}]-[o(t)o]-e(vt)


d_{y}[ pow-put[m]-[a_{1},...,a_{n}]-[o(t)o]-e(y) ] = ...

... (( pow-put[m]-[a_{1},...,a_{n}]-[o(t)o]-e(y) )^{m}+a_{1})·...

... (n) ...

... (( pow-put[m]-[a_{1},...,a_{n}]-[o(t)o]-e(y) )^{m}+a_{n})


d_{y}[ e-put[m]-[a_{1},...,a_{n}]-[o(t)o]-e(y) ] = ...

... (( e^{e-put[m]-[a_{1},...,a_{n}]-[o(t)o]-e(y)} )^{m}+a_{1})·...

... (n) ...

... (( e^{e-put[m]-[a_{1},...,a_{n}]-[o(t)o]-e(y)} )^{m}+a_{n})


d_{y}[ log-put[m]-[a_{1},...,a_{n}]-[o(t)o]-e(y) ] = ...

... (( ln(log-put[m]-[a_{1},...,a_{n}]-[o(t)o]-e(y)) )^{m}+a_{1})·...

... (n) ...

... (( ln(log-put[m]-[a_{1},...,a_{n}]-[o(t)o]-e(y)) )^{m}+a_{n})


d_{t}[z(y)] = v·y^{n+(-1)}(y^{m}+a_{1})·...(n)...·(y^{m}+a_{n})

z(t) = (1/n)·( pow-put[m]-[a_{1},...,a_{n}]-[o(t)o]-e(vt) )^{n}


d_{t}[z(y)] = v·(1/y)·(y^{m}+a_{1})·...(n)...·(y^{m}+a_{n})

z(t) = ln( pow-put[m]-[a_{1},...,a_{n}]-[o(t)o]-e(vt) )


d_{t}[z(y)] = v·e^{ny}·(y^{m}+a_{1})·...(n)...·(y^{m}+a_{n})

z(t) = (1/n)·e^{n·( pow-put[m]-[a_{1},...,a_{n}]-[o(t)o]-e(vt) )}


d_{t}[z(y)] = v·d_{y}[g(y)]·(y^{m}+a_{1})·...(n)...·(y^{m}+a_{n})

z(t) = g( pow-put[m]-[a_{1},...,a_{n}]-[o(t)o]-e(vt) )


d_{t}[z(y)] = ...

... v·( d_{y}[f_{1}(y)]+...(p)...+d_{y}[f_{p}(y)] )·(y^{m}+a_{1})·...(n)...·(y^{m}+a_{n})

z(t) = ...

... f_{1}( pow-put[m]-[a_{1},...,a_{n}]-[o(t)o]-e(vt) )+...

... (p) ...

... f_{p}( pow-put[m]-[a_{1},...,a_{n}]-[o(t)o]-e(vt) )


d_{t}[z(y)] = ...

... v·( (y^{p+1}+(-1))/(y+(-1)) )·(y^{m}+a_{1})·...(n)...·(y^{m}+a_{n})

z(t) = ...

... ( pow-put[m]-[a_{1},...,a_{n}]-[o(t)o]-e(vt) )+...

... (p) ...

... (1/(p+1))·( pow-put[m]-[a_{1},...,a_{n}]-[o(t)o]-e(vt) )^{p+1}


d_{t}[z(y)] = ...

... v·( (y^{m}+a_{1})·...(n)...·(y^{m}+a_{n}) )^{p}

z(t) = ( pow-put[m]-[a_{1},...,a_{n}]-[o(t)o]-e(v^{(1/p)}·t) )^{[o(t)o]p}


d_{t}[z(y)] = ...

... v·( y·(y^{m}+a_{1})·...(n)...·(y^{m}+a_{n}) )^{p}

z(t) = ( (1/2)·( pow-put[m]-[a_{1},...,a_{n}]-[o(t)o]-e(v^{(1/p)}·t) )^{2} )^{[o(t)o]p}


d_{t}[z(y)] = ...

... v·( d_{y}[g(y)]·(y^{m}+a_{1})·...(n)...·(y^{m}+a_{n}) )^{p}

z(t) = ( g( pow-put[m]-[a_{1},...,a_{n}]-[o(t)o]-e(v^{(1/p)}·t) ) )^{[o(t)o]p}


d_{t}[z(y)] = ...

... v·y^{q}·( (y^{m}+a_{1})·...(n)...·(y^{m}+a_{n}) )^{p}

z(t) = ( (p/(q+p))·( pow-put[m]-[a_{1},...,a_{n}]-[o(t)o]-e(v^{(1/p)}·t) )^{((q+p)/p)} )^{[o(t)o]p}


d_{t}[z(y)] = ...

... v·d_{y}[g(y)]^{q}·( (y^{m}+a_{1})·...(n)...·(y^{m}+a_{n}) )^{p}

z(t) = ...

... ( (p/(q+p))·( d_{pow-put[m]-[a_{1},...,a_{n}]-[o(t)o]-e(v^{(1/p)}·t)}[ ...

... g( pow-put[m]-[a_{1},...,a_{n}]-[o(t)o]-e(v^{(1/p)}·t) ) ...

... ] )^{((q+p)/p)} )^{[o(t)o]p} ...

... [o(t)o] d_{pow-put[m]-[a_{1},...,a_{n}]-[o(t)o]-e(v^{(1/p)}·t)}[ ...

... g( pow-put[m]-[a_{1},...,a_{n}]-[o(t)o]-e(v^{(1/p)}·t) ) ...

... ]^{[o( pow-put[m]-[a_{1},...,a_{n}]-[o(t)o]-e(v^{(1/p)}·t) )o](-p)}


int[ d_{t}[z(y)]^{p} ] d[t] = int[ d_{y}[z(y)]^{p}·d_{t}[y]^{p} ] d[t]

ecuacions diferencials sinus-polinomi

int[ d_{x}[f(x^{m})] ] d[x] = ...

... f(x^{m}) = f(x^{m})

int[ d_{( f^{o(-1)}( e-[o(t)o]-sin[(-n)](y) ) )^{(1/m)}}[f^{o(-1)}( e-[o(t)o]-sin[(-n)](y) )] ] d[x] = ...

... f^{o(-1)}( f(x^{m}) ) = x^{m}

d_{x}[ sin[(-n)]-[o(t)o]-ln( f(x^{m}) ) ] = ...

... (1/f(x^{m}))·d_{x}[f(x^{m})]·(-n)·( sin(x) )^{(-1)·(n+1)})·cos(x)

d_{y}[ e-[o(t)o]-sin[(-n)](y) ] = ...

... e-[o(t)o]-sin[(-n)](y)·...

... d_{( f^{o(-1)}( e-[o(t)o]-sin[(-n)](y) ) )^{(1/m)}}[f^{o(-1)}( e-[o(t)o]-sin[(-n)](y) )]·...

... (1/(-n))·( 1/cos( ( f^{o(-1)}( e-[o(t)o]-ln[(-n)](y) ) )^{(1/m)} ) )·...

... ( sin( ( f^{o(-1)}( e-[o(t)o]-ln[(-n)](y) ) )^{(1/m)} ) )^{n+1}


d_{t}[y] = ...

... ( ((cd)·cos(d))/(( sin(d) )^{n+1}·d^{m}) )·( 1/(b^{m}+(-1)·a^{m}) )·...

... ( 1/cos(y) )·( sin(y) )^{n+1}·(y^{m}+a^{m})·(y^{m}+b^{m})


y(t) = ...

... ( ...

... ( (a^{m}+(-1)·b^{m})/(e-[o(t)o]-sin[(-n)]((-n)·( ((cd)·cos(d))/(( sin(d) )^{n+1}·d^{m}) )·t)+(-1)) )+...

... (-1)·b^{m}...

... )^{(1/m)}


d_{t}[z] = ...

... ( ((cd)·cos(d))/(( sin(d) )^{n+1}·d^{m}) )·...

... ( 1/cos(z) )·( sin(z) )^{n+1}·(z^{m}+a^{m})


z(t) = ...

... ( ( e-[o(t)o]-sin[(-n)]((-n)·( ((cd)·cos(d))/(( sin(d) )^{n+1}·d^{m}) )·t) )+(-1)·a^{m} )^{(1/m)}

ecuacions diferencials exponencial-polinomi

int[ d_{x}[f(x^{m})] ] d[x] = ...

... f(x^{m}) = f(x^{m})

int[ d_{( f^{o(-1)}( e-[o(t)o]-e[(-n)](y) ) )^{(1/m)}}[f^{o(-1)}( e-[o(t)o]-e[(-n)](y) )] ] d[x] = ...

... f^{o(-1)}( f(x^{m}) ) = x^{m}

d_{x}[ e[(-n)]-[o(t)o]-ln( f(x^{m}) ) ] = (1/f(x^{m}))·d_{x}[f(x^{m})]·(-n)·e^{(-n)·x}

d_{y}[ e-[o(t)o]-e[(-n)](y) ] = ...

... e-[o(t)o]-e[(-n)](y)·...

... d_{( f^{o(-1)}( e-[o(t)o]-e[(-n)](y) ) )^{(1/m)}}[f^{o(-1)}(e-[o(t)o]-e[(-n)](y))]·...

... (1/(-n))·e^{n·( f^{o(-1)}( e-[o(t)o]-e[(-n)](y) ) )^{(1/m)}}


d_{t}[y] = ( (cd)/(e^{nd}d^{m}) )·( 1/(b^{m}+(-1)a^{m}) )·e^{ny}·(y^{m}+a^{m})·(y^{m}+b^{m})


y(t) = ...

... ( ...

... ( (a^{m}+(-1)·b^{m})/(e-[o(t)o]-e[(-n)]((-n)·( (cd)/(e^{nd}·d^{m}) )·t)+(-1)) )+...

... (-1)·b^{m}...

... )^{(1/m)}

ecuacions diferencials logaritme-polinomi

int[ d_{x}[f(x^{m})] ] d[x] = ...

... f(x^{m}) = f(x^{m})

int[ d_{( f^{o(-1)}( e-[o(t)o]-ln[(-n)](y) ) )^{(1/m)}}[f^{o(-1)}( e-[o(t)o]-ln[(-n)](y) )] ] d[x] = ...

... f^{o(-1)}( f(x^{m}) ) = x^{m}

d_{x}[ ln[(-n)]-[o(t)o]-ln( f(x^{m}) ) ] = (1/f(x^{m}))·d_{x}[f(x^{m})]·(-n)·( ln(x) )^{(-1)·(n+1)})·(1/x)

d_{y}[ e-[o(t)o]-ln[(-n)](y) ] = ...

... e-[o(t)o]-ln[(-n)](y)·...

... d_{( f^{o(-1)}( e-[o(t)o]-ln[(-n)](y) ) )^{(1/m)}}[f^{o(-1)}( e-[o(t)o]-ln[(-n)](y) )]·...

... (1/(-n))·( f^{o(-1)}( e-[o(t)o]-ln[(-n)](y) ) )^{(1/m)}·...

... ( ln( ( f^{o(-1)}( e-[o(t)o]-ln[(-n)](y) ) )^{(1/m)} ) )^{n+1}


d_{t}[y] = ...

... ( c/(( ln(d) )^{n+1}·d^{m}) )·(1/(b^{m}+(-1)·a^{m}))·...

... y·( ln(y) )^{n+1}·(y^{m}+a^{m})·(y^{m}+b^{m})


y(t) = ...

... ( ( (a^{m}+(-1)·b^{m})/(e-[o(t)o]-ln[(-n)]((-n)·( c/(( ln(d) )^{n+1}·d^{m}) )·t)+(-1)) )+(-1)·b^{m} )^{(1/m)}

viernes, 16 de octubre de 2020

ecuacions diferencials

int[ d_{x}[f(x^{m})] ] d[x] = ...

... f(x^{m}) = f(x^{m})

int[ d_{( f^{o(-1)}( e-[o(t)o]-pow[(-n)](y) ) )^{(1/m)}}[f^{o(-1)}( e-[o(t)o]-pow[(-n)](y) )] ] d[x] = ...

... f^{o(-1)}( f(x^{m}) ) = x^{m}

d_{x}[ pow[(-n)]-[o(t)o]-ln( f(x^{m}) ) ] = (1/f(x^{m}))·d_{x}[f(x^{m})]·(-n)·(x^{(-1)·(n+1)})

d_{y}[ e-[o(t)o]-pow[(-n)](y) ] = ...

... e-[o(t)o]-pow[(-n)](y)·...

... d_{( f^{o(-1)}( e-[o(t)o]-pow[(-n)](y) ) )^{(1/m)}}[f^{o(-1)}( e-[o(t)o]-pow[(-n)](y) )]·...

... (1/(-n))·( f^{o(-1)}( e-[o(t)o]-pow[(-n)](y) ) )^{((n+1)/m)}


d_{t}[y] = ...

... (c/d^{n+m})·(1/(b^{m}+(-1)·a^{m}))·y^{n+1}(y^{m}+a^{m})·(y^{m}+b^{m})

y(t) = ...

... ( ( (a^{m}+(-1)·b^{m})/(e-[o(t)o]-pow[(-n)]((-n)·(c/d^{n+m})·t)+(-1)) )+(-1)·b^{m} )^{(1/m)}

cinematica: tren de (-b) a b con parada en (-c) y c y zero

int[ d_{x}[f(x^{n})] ] d[x] = ...

... f(x^{n}) = f(x^{n})

int[ d_{( f^{o(-1)}( e-[o(t)o]-ln[1](y) ) )^{(1/n)}}[f^{o(-1)}( e-[o(t)o]-ln[1](y) )] ] d[x] = ...

... f^{o(-1)}( f(x^{n}) ) = x^{n}

d_{x}[ ln[1]-[o(t)o]-ln( f(x^{n}) ) ] = ( 1/f(x^{n}) )·d_{x}[f(x^{n})]·(1/x)

d_{y}[ e-[o(t)o]-ln[1](y) ] = ...

... e-[o(t)o]-ln[1](y)·...

... ( d_{( f^{o(-1)}( e-[o(t)o]-ln[1](y) ) )^{(1/n)}}[f^{o(-1)}( e-[o(t)o]-ln[1](y) )] )·...

... ( f^{o(-1)}( e-[o(t)o]-ln[1](y) ) )^{(1/n)}


d_{t}[x] = (1/(b^{2}+(-1)·c^{2}))·(a/d^{2})·x(x^{2}+(-1)·c^{2})·(x^{2}+(-1)·b^{2})

x(t) = ( ( (b^{2}+(-1)·c^{2})/(1+(-1)·e-[o(t)o]-ln[1]((a/d^{2})·t)) )+c^{2} )^{(1/2)}

jueves, 15 de octubre de 2020

cinematica: tren de (-b) a b con parada en (-c) y c

d_{t}[x] = ( 1/(b^{2}+(-1)·c^{2}) )·(a/(2x))·(x^{2}+(-1)·c^{2})·(x^{2}+(-1)·b^{2})

x^{2} = y+(1/2)·c^{2}+(1/2)·b^{2}

ln( 1+(-1)( (b^{2}+(-1)·c^{2})/(x^{2}+(-1)·c^{2}) ) ) = at

x(t) = ( ( (b^{2}+(-1)·c^{2})/(1+(-1)·e^{at}) )+c^{2} )^{(1/2)}

a·(1/(b^{2}+(-1)·c^{2}))(x^{2}+(-1)·c^{2})(x^{2}+(-1)·b^{2}) = ...

... a·( ( (b^{2}+(-1)·c^{2})·e^{at} )/( 1+(-1)·e^{at} )^{2} )


d_{t}[x] = (1/2)( ( (b^{2}+(-1)·c^{2})/(1+(-1)·e^{at}) )+c^{2} )^{(-1)(1/2)}

... ( ( ( (b^{2}+(-1)·c^{2})·e^{at}a )/(1+(-1)·e^{at})^{2} ) )

x = 0 ==>

( (b^{2}+(-1)·c^{2})/(1+(-1)·e^{at}) ) = (-1)·c^{2}


int[ d_{x}[f(x^{n})] ] d[x] = ...

... f(x^{n}) = f(x^{n})

int[ d_{( f^{o(-1)}( e-[o(t)o]-pow[1](y) ) )^{(1/n)}}[f^{o(-1)}( e-[o(t)o]-pow[1](y) )] ] d[x] = ...

... f^{o(-1)}( f(x^{n}) ) = x^{n}

d_{x}[ pow[1]-[o(t)o]-ln( f(x^{n}) ) ] = ( 1/f(x^{n}) )·d_{x}[f(x^{n})]

d_{y}[ e-[o(t)o]-pow[1](y) ] = ...

... e-[o(t)o]-pow[1](y)·...

... ( d_{( f^{o(-1)}( e-[o(t)o]-pow[1](y) ) )^{(1/n)}}[f^{o(-1)}( e-[o(t)o]-pow[1](y) )] )·...


d_{t}[x] = ( 1/(b^{2}+(-1)·c^{2}) )·(a/d)·(x^{2}+(-1)·c^{2})·(x^{2}+(-1)·b^{2})

x(t) = ( ( (b^{2}+(-1)·c^{2})/(1+(-1)·e-[o(t)o]-pow[1]((a/d)·t)) )+c^{2} )^{(1/2)} 

cinematica: tren de (-b) a b con parada en zero

d_{t}[x] = a·( 1/(2b^{2}) )·x( x^{2}+(-1)·b^{2})

( ( 1/(x+(-b)) )+( 1/(x+b) )+(-2)·( 1/x ) )·d_{t}[x] = a

( ( 2x/(x+(-b))(x+b) )+(-2)·( 1/x ) )·d_{t}[x] = a

ln(x+(-b))+ln(x+b)+(-1)·ln(x^{2}) = at

1+(-1)·(b^{2}/x^{2}) = e^{at}

(b^{2}/x^{2}) = 1+(-1)·e^{at}

x(t) = b·( (1+(-1)·e^{at}) )^{(-1)·(1/2)}

d_{t}[x] = (ba)·(1/2)·( (1+(-1)·e^{at}) )^{(-1)·(3/2)}·e^{at}

català-castellàn [ ve-wel ] y [ vo-u ] y [ z-xum ]

llave

llawel


clave

clawel


breve

brewel


leve

lewel


nieve

newel


nueve

nowel


clavo

clau


huevo

hou


nuevo

nueva

nou

nova


bravo

brava

brau

brava


inyectivo

inyectiva

inyectiu

inyectiva


biyectivo

biyectiva

biyectiu

biyectiva


exhaustivo

exhaustiva

exhaustiu

exhaustiva


paz

paxum


vez

vexum


luz

luxum


cruz

cruxum


voz

voxum


pez

pexum


diez

dexum


juez

joxum

miércoles, 14 de octubre de 2020

verbos traer y extraer --- treure y extreure

traigo

traes

trae

traemos

traéis

traen


traído

traída


trec

treus

treu

treyem

treyeu

treuen


tregut

treguda


traer: objeto de allí a aquí.

treure: objecte de aquí a allà.


extraer: objeto de aquí a allí.

extreure: objecte de allà a aquí.


distraer: de allí a aquí.

distreure: de aquí a allà.


disextraer: de aquí a allí.

disextreure: de allà a aquí.


vengo a distraer a aquí.

vinc a disextreure a aquí.

voy a disextraer a allí.

vaitx a distreure a allà.


extrec pizza a casa de la pizzería.

traigo pizza a casa de la pizzería.

trec la basura.

extraigo la basura.

verbos caer --- caure

caigo

caes

cae

caemos

caéis

caen


caído

caída


caic

caus

cau

cayem

cayeu

cauen


caigut

caiguda

calculo integral

int[ ( g(f(x)) )^{n} ] d[x] = ...

... (1/(n+1))·( g(f(x)) )^{n+1} [o(x)o] ( g(f(x)) )^{[o(x)o](-1)}


int[ ( f(x) )^{n} ] d[x] = ...

... (1/(n+1))·( f(x) )^{n+1} [o(x)o] ( f(x) )^{[o(x)o](-1)}


int[ ( ax+b )^{n} ] d[x] = ...

... (1/(n+1))·( ax+b )^{n+1} [o(x)o] (1/a)


int[ ( e^{ax+b} )^{n} ] d[x] = ...

... (1/(n+1))·( e^{ax+b} )^{n+1} [o(x)o] (-1)·e^{(-1)·(ax+b)} [o(x)o] (-1)·(1/a^{2})


int[ ( ln( ax+b ) )^{n} ] d[x] = ...

... (1/(n+1))·( ln( ax+b ) )^{n+1} [o(x)o] ln( ln( ax+b ) ) [o(x)o] (1/3)·( ax+b )^{3} [o(x)o] (1/a^{3})


int[ ( sin(ax+b) )^{n} ] d[x] = ...

... (1/(n+1))·( sin(ax+b) )^{n+1} [o(x)o] sin(ax+b) [o(x)o] (1/a^{2})+...

... (1/(n+1))·( sin(ax+b) )^{n+1} [o(x)o] tan[o(x)o](ax+b) [o(x)o] (-1)·cos(ax+b) [o(x)o] (1/a^{3})


int[ ( cos(ax+b) )^{n} ] d[x] = ...

... (1/(n+1))·( cos(ax+b) )^{n+1} [o(x)o] cos(ax+b) [o(x)o] (1/a^{2})+...

... (1/(n+1))·( cos(ax+b) )^{n+1} [o(x)o] cot[o(x)o](ax+b) [o(x)o] (-1)·sin(ax+b) [o(x)o] (1/a^{3})


int[ (-1)·( sin(ax+b) )^{n} ] d[x] = ...

... (1/(n+1))·( sin(ax+b) )^{n+1} [o(x)o] (-1)·sin(ax+b) [o(x)o] (1/a^{2})+...

... (1/(n+1))·( sin(ax+b) )^{n+1} [o(x)o] tan[o(x)o](ax+b) [o(x)o] cos(ax+b) [o(x)o] (1/a^{3})


int[ (-1)·( cos(ax+b) )^{n} ] d[x] = ...

... (1/(n+1))·( cos(ax+b) )^{n+1} [o(x)o] (-1)·cos(ax+b) [o(x)o] (1/a^{2})+...

... (1/(n+1))·( cos(ax+b) )^{n+1} [o(x)o] cot[o(x)o](ax+b) [o(x)o] sin(ax+b) [o(x)o] (1/a^{3})


int[ ( sinh(ax+b) )^{n} ] d[x] = ...

... (1/(n+1))·( sinh(ax+b) )^{n+1} [o(x)o] sinh(ax+b) [o(x)o] (1/a^{2})+...

... (1/(n+1))·( sinh(ax+b) )^{n+1} [o(x)o] tanh[o(x)o](ax+b) [o(x)o] (-1)·cosh(ax+b) [o(x)o] (1/a^{3})


int[ (-1)·( cosh(ax+b) )^{n} ] d[x] = ...

... (1/(n+1))·( cosh(ax+b) )^{n+1} [o(x)o] cosh(ax+b) [o(x)o] (1/a^{2})+...

... (1/(n+1))·( cosh(ax+b) )^{n+1} [o(x)o] coth[o(x)o](ax+b) [o(x)o] (-1)·sinh(ax+b) [o(x)o] (1/a^{3})


int[ (-1)·( sinh(ax+b) )^{n} ] d[x] = ...

... (1/(n+1))·( sinh(ax+b) )^{n+1} [o(x)o] (-1)·sinh(ax+b) [o(x)o] (1/a^{2})+...

... (1/(n+1))·( sinh(ax+b) )^{n+1} [o(x)o] tanh[o(x)o](ax+b) [o(x)o] cosh(ax+b) [o(x)o] (1/a^{3})


int[ ( cosh(ax+b) )^{n} ] d[x] = ...

... (1/(n+1))·( cosh(ax+b) )^{n+1} [o(x)o] (-1)·cosh(ax+b) [o(x)o] (1/a^{2})+...

... (1/(n+1))·( cosh(ax+b) )^{n+1} [o(x)o] coth[o(x)o](ax+b) [o(x)o] sinh(ax+b) [o(x)o] (1/a^{3})


int[ ( 1/sin(x) ) ] d[x] = (-1)·cos(x)+cot[o(x)o](x) [o(x)o] sin(x)

int[ (-1)·( 1/cos(x) ) ] d[x] = (-1)·sin(x)+tan[o(x)o](x) [o(x)o] cos(x)

int[ ( 1/cos(x) ) ] d[x] = sin(x)+tan[o(x)o](x) [o(x)o] (-1)·cos(x)

int[ (-1)·( 1/sin(x) ) ] d[x] = cos(x)+cot[o(x)o](x) [o(x)o] (-1)·sin(x)

martes, 13 de octubre de 2020

cinematica: tren de (-b) a b

d_{t}[x] = (a/(2b))·( x^{2}+(-1)·b^{2} )

( ( 1/(x+(-b)) )+(-1)( 1/(x+b) ) )·d_{t}[x] = a

ln(x+(-b))+(-1)·ln(x+b) = at

1+(-1)·( (2b)/(x+b) ) = e^{at}

( (2b)/(x+b) ) = 1+(-1)·e^{at}

x(t) = ( (2b)/(1+(-1)·e^{at}) )+(-b)

d_{t}[x] = (2ba)·( e^{at}/(1+(-1)·e^{at})^{2} )

cinemática: tren de zero a b

d_{t}[x] = (a/b)·x(x+(-b))

( ( 1/(x+(-b)) )+(-1)·(1/x) )·d_{t}[x] = a

ln(x+(-b))+(-1)·ln(x) = at

(1+(-1)(b/x)) = e^{at}

(b/x)  = 1+(-1)·e^{at}

x(t) = ( b/(1+(-1)·e^{at}) )

d_{t}[x] = (ba)·( e^{at}/(1+(-1)·e^{at})^{2} )

Teorema del Buey del Projimo

( x € Local ) <==> No ( y € Local )

( f( objeto ) € x ) <==> No ( f( objeto ) € y )


( x € Sucursal-de-Caixa-Bank ) <==> No ( y € Sucursal-de-Caixa-Bank )

( f( Marihuana ) € x ) <==> No ( f( Marihuana ) € y )

sistemes de ecuacions diferencials

d_{t}[x(t)] = a·y(t)

d_{t}[x(t)] = b·z(t)

x(t) = (ab)·(1/(n+1))·t^{n+1}

y(t) = b·t^{n}

z(t) = a·t^{n}


d_{t}[x(t)] = a·e^{y(t)}

d_{t}[x(t)] = b·e^{z(t)}

x(t) = (ab)·(1/(n+1))·t^{n+1}

y(t) = ln(bt^{n})

z(t) = ln(at^{n})


d_{t}[x(t)] = a·ln(y(t))

d_{t}[x(t)] = b·ln(z(t))

x(t) = (ab)·(1/(n+1))·t^{n+1}

y(t) = e^{bt^{n}}

z(t) = e^{at^{n}}


d_{t}[x(t)] = a·( y(t) )^{p}

d_{t}[x(t)] = b·( z(t) )^{q}

x(t) = (ab)·(1/(n+1))·t^{n+1}

y(t) = b^{(1/p)}·t^{(n/p)}

z(t) = a^{(1/q)}·t^{(n/q)}


d_{t}[x(t)] = a·( y(t) )^{p}·f(y(t))

d_{t}[x(t)] = b·( z(t) )^{q}·f(z(t))

x(t) = (ab)·(1/(n+1))·t^{n+1}

y(t) = f-pow[p]( bt^{n} )

z(t) = f-pow[q]( at^{n} )


d_{t}[x(t)] = a·e^{u·y(t)}f(y(t))

d_{t}[x(t)] = b·e^{v·z(t)}·f(z(t))

x(t) = (ab)·(1/(n+1))·t^{n+1}

y(t) = f-e[u]( bt^{n} )

z(t) = f-e[v]( at^{n} )


d_{t}[x(t)] = a·( y(t) )^{p}·e^{u·y(t)}f(y(t))

d_{t}[x(t)] = b·( z(t) )^{q}·e^{v·z(t)}·f(z(t))

x(t) = (ab)·(1/(n+1))·t^{n+1}

y(t) = f-e[u]-pow[p]( bt^{n} )

z(t) = f-e[v]-pow[q]( at^{n} )


d_{t}[x(t)] = a·y(t)+(b/n)·t·d_{t}[z(t)]

d_{t}[x(t)] = b·z(t)+(a/n)·t·d_{t}[y(t)]

x(t) = (ab)·(1/(n+1))·t^{n+1}

y(t) = (b/2)·t^{n}

z(t) = (a/2)·t^{n}


d_{t}[x(t)] = a·e^{y(t)}+(b/n)·t·e^{z(t)}·d_{t}[z(t)]

d_{t}[x(t)] = b·e^{z(t)}+(a/n)·t·e^{y(t)}·d_{t}[y(t)]

x(t) = (ab)·(1/(n+1))·t^{n+1}

y(t) = ln((b/2)·t^{n})

z(t) = ln((a/2)·t^{n})

lunes, 12 de octubre de 2020

sistemes de ecuacions diferencials

sistema:

d_{t}[x(t)] = y(t)+z(t)

d_{t}[y(t)] = z(t)+x(t)

d_{t}[z(t)] = x(t)+y(t)


ecuación diferencial asociada al sistema:

d_{tt}^{2}[x(t)] = d_{t}[x(t)]+2·x(t)

d_{tt}^{2}[y(t)] = d_{t}[y(t)]+2·y(t)

d_{tt}^{2}[z(t)] = d_{t}[z(t)]+2·z(t)

k = (1/2)·( 1+3 ) = 2

x(t) = e^{2t}

y(t) = e^{2t}

z(t) = e^{2t}


sistema:

d_{t}[x(t)] = e^{y(t)}+e^{z(t)}

d_{t}[y(t)] = e^{z(t)}+e^{x(t)}

d_{t}[z(t)] = e^{x(t)}+e^{y(t)}

 

e^{2·x(t)} = e^{y(t)}e^{z(t)}

e^{2·y(t)} = e^{z(t)}e^{x(t)}

e^{2·z(t)} = e^{x(t)}e^{y(t)}


ecuación diferencial asociada a los sistemas:

d_{tt}^{2}[x(t)] = 2e^{2·x(t)}+e^{x(t)}·d_{t}[x(t)]

d_{tt}^{2}[y(t)] = 2e^{2·y(t)}+e^{y(t)}·d_{t}[y(t)]

d_{tt}^{2}[z(t)] = 2e^{2·z(t)}+e^{z(t)}·d_{t}[z(t)]

x(t) = ln(1/((-2)·t))

y(t) = ln(1/((-2)·t))

z(t) = ln(1/((-2)·t))


sistema:

d_{t}[x(t)] = ln(y(t))·y(t)+ln(z(t))·z(t)

d_{t}[y(t)] = ln(z(t))·z(t)+ln(x(t))·x(t)

d_{t}[z(t)] = ln(x(t))·x(t)+ln(y(t))·y(t)


2·( ln(x(t)) )^{2}·x(t) = ln(y(t))·ln(z(t))·( y(t)+z(t) )

2·( ln(y(t)) )^{2}·y(t) = ln(z(t))·ln(x(t))·( z(t)+x(t) )

2·( ln(z(t)) )^{2}·z(t) = ln(x(t))·ln(y(t))·( x(t)+y(t) )


2·( ln(x(t)) )^{2}·x(t) = ln(x(t))·x(t)·( ln(y(t))+ln(z(t)) )

2·( ln(y(t)) )^{2}·y(t) = ln(y(t))·y(t)·( ln(z(t))+ln(x(t)) )

2·( ln(z(t)) )^{2}·z(t) = ln(z(t))·z(t)·( ln(x(t))+ln(y(t)) )


ecuación diferencial asociada a los sistemas:

d_{tt}^{2}[x(t)] = d_{t}[x(t)]+2·ln(x(t))·x(t)+4·( ln(x(t)) )^{2}·x(t)

d_{tt}^{2}[y(t)] = d_{t}[y(t)]+2·ln(y(t))·y(t)+4·( ln(y(t)) )^{2}·y(t)

d_{tt}^{2}[z(t)] = d_{t}[z(t)]+2·ln(z(t))·z(t)+4·( ln(z(t)) )^{2}·z(t)

x(t) = e^{e^{2t}}

y(t) = e^{e^{2t}}

z(t) = e^{e^{2t}}

ecuacions diferencials sinus-exponencial-potencial

d_{x}[ e[n]-sin-arc[m](x) ] = d_{x}[ x^{m}e^{nx}sin(x) ] = ...

... (1/x)·( m·e[n]-sin-arc[m](x)+nx·e[n]-sin-arc[m](x)+...

... x·( x^{2m}e^{2nx}+(-1)·( e[n]-sin-arc[m](x) )^{2} )^{(1/2)} )


d_{y}[ arc[m]-sin-e[n](y) ]  = ...

... arc[m]-sin-e[n](y)·( 1/( m·y+ny·arc[m]-sin-e[n](y)+...

... arc[m]-sin-e[n](y)·( ( arc[m]-sin-e[n](y) )^{2m}e^{2n·arc[m]-sin-e[n](y)}+(-1)·y^{2} )^{(1/2)} ) )


f(x) = (1/y)·( (m+ny)·e[n]-sin-arc[m](y)+y·e[n]-cos-arc[m](y) )·d_{x}[y]

int[ f(x) ] d[x] = y^{m}·e^{nx}·sin(y)

int[ f(x) ] d[x] = e[n]-sin-arc[m](y)

arc[m]-sin-e[n]( int[ f(x) ] d[x] ) = y(x)

ecuacions diferencials sinus-exponencial

d_{x}[ sin-e[n](x) ] = d_{x}[ e^{nx}·sin(x) ] = ...

... n·sin-e[n](x)+( e^{2nx}+(-1)·( sin-e[n](x) )^{2} )^{(1/2)}


d_{y}[ e[n]-sin(y) ] = ...

... ( 1/( ny+( e^{2n·e[n]-sin(y)}+(-1)·y^{2} )^{(1/2)} ) )


f(x) = ( n·sin-e[n](y)+cos-e[n](y) )·d_{x}[y]

int[ f(x) ] d[x] = e^{ny}·sin(y)

int[ f(x) ] d[x] = sin-e[n](y)

e[n]-sin( int[ f(x) ] d[x] ) = y(x)

domingo, 11 de octubre de 2020

ecuacions diferencials sinus-potencia

d_{x}[ sin-arc[n](x) ] = d_{x}[ x^{n}·sin(x) ] = ...

... (1/x)·( n·sin-arc[n](x)+x·( x^{2n}+(-1)·( sin-arc[n](x) )^{2} )^{(1/2)} )


d_{y}[ arc[n]-sin(y) ] = ...

... arc[n]-sin(y)·( 1/( n·y+arc[n]-sin(y)·( ( arc[n]-sin(y) )^{2n}+(-1)·y^{2} )^{(1/2)} ) )


f(x) = (1/y)·( n·sin-arc[n](y)+y·cos-arc[n](y) )·d_{x}[y]

int[ f(x) ] d[x] = y^{n}·sin(y)

int[ f(x) ] d[x] = sin-arc[n](y)

arc[n]-sin( int[ f(x) ] d[x] ) = y(x)

mucho y poco

mucho [o] muchos

mucha [o] muchas

poco [o] pocos

poca [o] pocas


mult [o] mults

multa [o] multes

poc [o] pocs

poca [o] poques


multotzok [o] multotzoks

multotzak [o] multotzaks

pocotzok [o] pocotzoks

pocotzak [o] pocotzaks


mult-bicup-çí [o] mult-bicup-çís

mult-bicup-çuá [o] mult-bicup-çuás

poc-bicup-çí [o] poc-bicup-çís

poc-bicup-çuá [o] poc-bicup-cuás


és-de-puá mult-bicup-çí catalán.

és-de-puá poc-bicup-çí catalán.

verbos: moler y morir

ha muerto [o] está muerta

ha molido [o] está molida


ha mort [o] està morta

ha molit [o] està molida


ha-de-tek mortu-dut [o] està-de-tek morta-dat

ha-de-tek molitu-dut [o] està-de-tek molita-dat


ha-de-puá mortu-dom [ mort ] [o] està-de-puá morta-dam [ morta ]

ha-de-puá molitu-dom [ molit ] [o] està-de-puá molita-dam [ molita ]