1♣+1♢+1♡+1♠
2♣+2♢+2♡+2♠
3♣+3♢+3♡+3♠
4♣+4♢+4♡+4♠
P(4) = [ 4 // 4 ]·n
2♣+1♢+1♡+1♠
3♣+1♢+1♡+1♠
4♣+1♢+1♡+1♠
1♣+2♢+1♡+1♠
1♣+3♢+1♡+1♠
1♣+4♢+1♡+1♠
1♣+1♢+2♡+1♠
1♣+1♢+3♡+1♠
1♣+1♢+4♡+1♠
1♣+1♢+1♡+2♠
1♣+1♢+1♡+3♠
1♣+1♢+1♡+4♠
P(3,1)= [ 4 // 3 ]·(n+(-1))·n
2♣+2♢+1♡+1♠
3♣+3♢+1♡+1♠
4♣+4♢+1♡+1♠
1♣+1♢+2♡+2♠
1♣+1♢+3♡+3♠
1♣+1♢+4♡+4♠
2♣+1♢+2♡+1♠
3♣+1♢+3♡+1♠
4♣+1♢+4♡+1♠
1♣+2♢+1♡+2♠
1♣+3♢+1♡+3♠
1♣+4♢+1♡+4♠
2♣+1♢+1♡+2♠
3♣+1♢+1♡+3♠
4♣+1♢+1♡+4♠
1♣+2♢+2♡+1♠
1♣+3♢+3♡+1♠
1♣+4♢+4♡+1♠
P(2,2) = [ 4 // 2 ]·(n+(-1))·n
2♣+1♢+1♡+3♠
2♣+1♢+1♡+4♠
3♣+1♢+1♡+2♠
3♣+1♢+1♡+4♠
4♣+1♢+1♡+2♠
4♣+1♢+1♡+3♠
1♣+2♢+3♡+1♠
1♣+2♢+4♡+1♠
1♣+3♢+2♡+1♠
1♣+3♢+4♡+1♠
1♣+4♢+2♡+1♠
1♣+4♢+3♡+1♠
1♣+1♢+2♡+3♠
1♣+1♢+2♡+4♠
1♣+1♢+3♡+2♠
1♣+1♢+3♡+4♠
1♣+1♢+4♡+2♠
1♣+1♢+4♡+3♠
2♣+3♢+1♡+1♠
2♣+4♢+1♡+1♠
3♣+2♢+1♡+1♠
3♣+4♢+1♡+1♠
4♣+2♢+1♡+1♠
4♣+3♢+1♡+1♠
1♣+2♢+1♡+3♠
1♣+2♢+1♡+4♠
1♣+3♢+1♡+2♠
1♣+3♢+1♡+4♠
1♣+4♢+1♡+2♠
1♣+4♢+1♡+3♠
2♣+1♢+3♡+1♠
2♣+1♢+4♡+1♠
3♣+1♢+2♡+1♠
3♣+1♢+4♡+1♠
4♣+1♢+2♡+1♠
4♣+1♢+3♡+1♠
P(2,1,1) = [ 4 // 2 ]·( (n+(-2))·(n+(-1)) )·n
Escales:
1♣+2♢+3♡+4♠
4♣+1♢+2♡+3♠
3♣+4♢+1♡+2♠
2♣+3♢+4♡+1♠
2♣+3♢+4♡+5♠
5♣+2♢+3♡+4♠
4♣+5♢+2♡+3♠
3♣+4♢+5♡+2♠
P(1,2,3,4,5) = 4·(n+(-3))
1♣+2♣+3♣+4♣
1♢+2♢+3♢+4♢
1♡+2♡+3♡+4♡
1♠+2♠+3♠+4♠
2♣+3♣+4♣+5♣
2♢+3♢+4♢+5♢
2♡+3♡+4♡+5♡
2♠+3♠+4♠+4♠
P(1,2,3,4,5) = 4·(n+(-3))
1♣+2♣+3♠+4♠
1♠+2♠+3♣+4♣
4♣+1♣+2♠+3♠
4♠+1♠+2♣+3♣
1♢+2♢+3♡+4♡
1♡+2♡+3♢+4♢
4♢+1♢+2♡+3♡
4♡+1♡+2♢+3♢
P(1,2,3,4,5) = 8·(n+(-3))
sábado, 18 de enero de 2020
teoria de jocs: joc cuatre torres
[01,01][02,01][03,01][04,01]
[01,02][02,02][03,02][04,02]
[01,03][02,03][03,03][04,03]
[01,04][02,04][03,04][04,04]
[02,02] = torre_{a}
[02,03] = torre_{a}
[03,02] = torre_{b}
[03,03] = torre_{b}
[01,04] = rey_{a} ( 1 paso )
[04,04] = rey_{b} ( 1 paso )
[01,01] = reina_{a} ( n pasos )
[04,01] = reina_{b} ( n pasos )
algoritme-dual en 3 moviments:
{
reina_{a}[01,01] ==> reina_{b}[04,01]
rey_{b}[04,04] ==> rey_{b}[03,04]
torre_{a}[02,03] ==> torre_{a}[02,04]
escak-mat_{b}
}
{
reina_{b}[04,01] ==> reina_{a}[01,01]
rey_{a}[01,04] ==> rey_{a}[02,04]
torre_{b}[03,03] ==> torre_{b}[03,04]
escak-mat_{a}
}
algoritme-dual en 5 moviments:
{
reina_{a}[01,01] ==> reina_{b}[04,01]
torre_{b}[03,02] ==> torre_{b}[04,02]
reina_{a}[04,01] ==> torre_{b}[04,02]
torre_{b}[03,03] ==> torre_{b}[04,03]
reina_{a}[04,02] ==> torre_{b}[04,03]
escak-mat_{b}
}
{
reina_{b}[04,01] ==> reina_{a}[01,01]
torre_{a}[02,02] ==> torre_{a}[01,02]
reina_{b}[01,01] ==> torre_{a}[01,02]
torre_{a}[02,03] ==> torre_{a}[01,03]
reina_{b}[01,02] ==> torre_{a}[01,03]
escak-mat_{a}
}
algoritme-dual en 8 moviments:
{
torre_{a}[02,02] ==> torre_{b}[03,02]
reina_{b}[04,01] ==> torre_{a}[03,02]
reina_{a}[01,01] ==> reina_{a}[04,01]
rey_{b}[04,04] ==> rey_{b}[03,04]
reina_{a}[04,01] ==> reina_{b}[03,02]
torre_{b}[03,03] ==> reina_{a}[03,02]
torre_{a}[02,03] ==> torre_{a}[02,01]
torre_{b}[03,02] ==> torre_{b}[01,02]
escak-mat_{a}
}
{
torre_{b}[03,02] ==> torre_{a}[02,02]
reina_{a}[01,01] ==> torre_{b}[02,02]
reina_{b}[04,01] ==> reina_{b}[01,01]
rey_{a}[01,04] ==> rey_{a}[02,04]
reina_{b}[01,01] ==> reina_{a}[02,02]
torre_{a}[02,03] ==> reina_{b}[02,02]
torre_{b}[03,03] ==> torre_{b}[03,01]
torre_{a}[02,02] ==> torre_{a}[04,02]
escak-mat_{b}
}
teoria de jocs: joc cuatre-alfil
[01,01][02,01][03,01][04,01]
[01,02][02,02][03,02][04,02]
[01,03][02,03][03,03][04,03]
[01,04][02,04][03,04][04,04]
[02,02] = alfil_{a}
[02,03] = alfil_{a}
[03,02] = alfil_{b}
[03,03] = alfil_{b}
[01,04] = rey_{a}
[04,04] = rey_{b}
[01,01] = reina_{a}
[04,01] = reina_{b}
algoritme-dual de joc:
{
reina_{a}[01,01] ==> reina_{b}[04,01]
alfil_{b}[03,02] ==> reina_{a}[04,01]
alfil_{a}[02,02] ==> alfil_{a}[01,01]
alfil_{b}[03,03] ==> alfil_{a}[01,01]
alfil_{a}[02,03] ==> alfil_{b}[04,01]
}
{
reina_{b}[04,01] ==> reina_{a}[01,01]
alfil_{a}[02,02] ==> reina_{b}[01,01]
alfil_{b}[03,02] ==> alfil_{b}[04,01]
alfil_{a}[02,03] ==> alfil_{b}[04,01]
alfil_{b}[03,03] ==> alfil_{a}[01,01]
}
algoritme-dual:
{
rey_{b}[04,04] ==> rey_{b}[03,03]
alfil_{a}[04,01] ==> alfil_{a}[03,02]
rey_{b}[03,03] ==> alfil_{a}[03,02]
rey_{a}[01,04] ==> rey_{a}[02,04]
alfil_{b}[02,02] ==> alfil_{b}[03,03]
rey_{a}[02,04] ==> rey_{a}[01,04]
rey_{b}[03,02] ==> rey_{b}[02,02]
escak-mat_{a}
}
{
rey_{a}[01,04] ==> rey_{a}[02,03]
alfil_{b}[01,01] ==> alfil_{b}[02,02]
rey_{a}[02,03] ==> alfil_{b}[02,02]
rey_{b}[04,04] ==> rey_{a}[03,04]
alfil_{a}[03,02] ==> alfil_{a}[02,03]
rey_{b}[03,04] ==> rey_{b}[04,04]
rey_{a}[02,03] ==> rey_{a}[03,02]
escak-mat_{b}
}
algoritme-dual:
{
rey_{b}[04,04] ==> rey_{b}[04,03]
rey_{a}[01,04] ==> rey_{a}[02,03]
alfil_{b}[01,01] ==> alfil_{b}[02,02]
rey_{a}[02,03] ==> alfil_{b}[02,02]
rey_{b}[04,03] ==> rey_{b}[04,02]
alfil_{a}[04,01] ==> alfil_{a}[03,02]
escak-mat_{b}
}
{
rey_{a}[01,04] ==> rey_{a}[01,03]
rey_{b}[04,04] ==> rey_{b}[03,03]
alfil_{a}[04,01] ==> alfil_{a}[03,02]
rey_{b}[03,03] ==> alfil_{a}[03,02]
rey_{a}[01,03] ==> rey_{a}[01,02]
alfil_{b}[01,01] ==> alfil_{b}[02,02]
escak-mat_{a}
}
[01,02][02,02][03,02][04,02]
[01,03][02,03][03,03][04,03]
[01,04][02,04][03,04][04,04]
[02,02] = alfil_{a}
[02,03] = alfil_{a}
[03,02] = alfil_{b}
[03,03] = alfil_{b}
[01,04] = rey_{a}
[04,04] = rey_{b}
[01,01] = reina_{a}
[04,01] = reina_{b}
algoritme-dual de joc:
{
reina_{a}[01,01] ==> reina_{b}[04,01]
alfil_{b}[03,02] ==> reina_{a}[04,01]
alfil_{a}[02,02] ==> alfil_{a}[01,01]
alfil_{b}[03,03] ==> alfil_{a}[01,01]
alfil_{a}[02,03] ==> alfil_{b}[04,01]
}
{
reina_{b}[04,01] ==> reina_{a}[01,01]
alfil_{a}[02,02] ==> reina_{b}[01,01]
alfil_{b}[03,02] ==> alfil_{b}[04,01]
alfil_{a}[02,03] ==> alfil_{b}[04,01]
alfil_{b}[03,03] ==> alfil_{a}[01,01]
}
algoritme-dual:
{
rey_{b}[04,04] ==> rey_{b}[03,03]
alfil_{a}[04,01] ==> alfil_{a}[03,02]
rey_{b}[03,03] ==> alfil_{a}[03,02]
rey_{a}[01,04] ==> rey_{a}[02,04]
alfil_{b}[02,02] ==> alfil_{b}[03,03]
rey_{a}[02,04] ==> rey_{a}[01,04]
rey_{b}[03,02] ==> rey_{b}[02,02]
escak-mat_{a}
}
{
rey_{a}[01,04] ==> rey_{a}[02,03]
alfil_{b}[01,01] ==> alfil_{b}[02,02]
rey_{a}[02,03] ==> alfil_{b}[02,02]
rey_{b}[04,04] ==> rey_{a}[03,04]
alfil_{a}[03,02] ==> alfil_{a}[02,03]
rey_{b}[03,04] ==> rey_{b}[04,04]
rey_{a}[02,03] ==> rey_{a}[03,02]
escak-mat_{b}
}
algoritme-dual:
{
rey_{b}[04,04] ==> rey_{b}[04,03]
rey_{a}[01,04] ==> rey_{a}[02,03]
alfil_{b}[01,01] ==> alfil_{b}[02,02]
rey_{a}[02,03] ==> alfil_{b}[02,02]
rey_{b}[04,03] ==> rey_{b}[04,02]
alfil_{a}[04,01] ==> alfil_{a}[03,02]
escak-mat_{b}
}
{
rey_{a}[01,04] ==> rey_{a}[01,03]
rey_{b}[04,04] ==> rey_{b}[03,03]
alfil_{a}[04,01] ==> alfil_{a}[03,02]
rey_{b}[03,03] ==> alfil_{a}[03,02]
rey_{a}[01,03] ==> rey_{a}[01,02]
alfil_{b}[01,01] ==> alfil_{b}[02,02]
escak-mat_{a}
}
teoria de jocs: corrents de peó
corrents de peó en una pared de totxos.
corrents de peó en un terra de baldosas.
corrents de peó en una pared de azulejos.
corrents de peó en un terra de baldosas.
corrents de peó en una pared de azulejos.
teoria de jocs: joc peó 3-2
n=5k:
Si ( a = 1r & b = 2n ) ==> ( F=a & V=b )
Si ( a = 2n & b = 1r ) ==> ( V=a & F=b )
[a_{0}][00][a_{1}][b_{2}][a_{2}][00][a_{3}][00][00][b_{0}]
[a_{0}][00][a_{1}][b_{2}][a_{2}][00][b_{3}][00][00][b_{0}]
9+((-2)+(-3))+((-2)+(-3))+((-2)+3) = 0
9+((-3)+(-2))+((-3)+(-2))+(3+(-2)) = 0
n=5k+1:
Si ( a = 1r & b = 2n ) ==> ( F=a & V=b )
Si ( a = 2n & b = 1r ) ==> ( V=a & F=b )
[a_{0}][00][a_{1}][00][a_{2}][00][00][b_{1}][00][00][b_{0}]
[a_{0}][00][a_{1}][00][b_{2}][00][00][b_{1}][00][00][b_{0}]
10+((-2)+(-3))+((-2)+(-3)) = 0
10+((-3)+(-2))+((-3)+(-2)) = 0
teoria de jocs: joc peó 4-1
n=5k:
Si ( a = 1r & b = 2n ) ==> ( V=a & F=b )
Si ( a = 2n & b = 1r ) ==> ( F=a & V=b )
[a_{0}][b_{2}][a_{2}][00][00][b_{1}][00][00][00][b_{0}]
[a_{0}][a_{1}][00][00][00][b_{1}][00][00][00][b_{0}]
9+((-1)+(-4))+((-1)+(-4))+1 = 0
9+((-4)+(-1))+(-4) = 0
n=5k+1:
Si ( a = 1r & b = 2n ) ==> ( F=a & V=b )
Si ( a = 2n & b = 1r ) ==> ( V=a & F=b )
[a_{0}][a_{1}][a_{2}][00][00][00][b_{1}][00][00][00][b_{0}]
[a_{0}][a_{1}][b_{2}][00][00][00][b_{1}][00][00][00][b_{0}]
10+((-1)+(-4))+((-1)+(-4)) = 0
10+((-4)+(-1))+((-4)+(-1)) = 0
n=5k+2:
Si ( a = 1r & b = 2n ) ==> ( V=a & F=b )
Si ( a = 2n & b = 1r ) ==> ( F=a & V=b )
[a_{0}][a_{1}][a_{2}][b_{2}][00][00][00][b_{1}][00][00][00][b_{0}]
[a_{0}][a_{1}][a_{2}][a_{3}][00][00][00][b_{3}][00][00][00][b_{0}]
11+((-1)+(-4))+((-1)+(-4))+(-1) = 0
11+((-4)+(-1))+((-4)+(-1))+(4+(-1))+(-4) = 0
n=5k+3:
Si ( a = 1r & b = 2n ) ==> ( F=a & V=b )
Si ( a = 2n & b = 1r ) ==> ( V=a & F=b )
[a_{0}][a_{1}][a_{2}][a_{3}][a_{4}][00][00][00][b_{3}][00][00][00][b_{0}]
[a_{0}][a_{1}][a_{2}][a_{3}][b_{4}][00][00][00][b_{3}][00][00][00][b_{0}]
12+((-1)+(-4))+((-1)+(-4))+((-1)+4)+((-1)+(-4)) = 0
12+((-4)+(-1))+((-4)+(-1))+(4+(-1))+((-4)+(-1)) = 0
n=5k+4:
Si ( a = 1r & b = 2n ) ==> ( F=a & V=b )
Si ( a = 2n & b = 1r ) ==> ( V=a & F=b )
[a_{0}][a_{3}][a_{2}][00][00][b_{2}][00][00][00][b_{1}][00][00][00][b_{0}]
[a_{0}][b_{3}][a_{2}][00][00][b_{2}][00][00][00][b_{1}][00][00][00][b_{0}]
13+((-1)+(-4))+((-1)+(-4))+(1+(-4)) = 0
13+((-4)+(-1))+((-4)+(-1))+((-4)+1) = 0
viernes, 17 de enero de 2020
teoria de jocs: joc peó 3-1
n=4k:
Si ( a = 1r & b = 2n ) ==> ( V=a & F=b )
Si ( a = 2n & b = 1r ) ==> ( F=a & V=b )
[a_{0}][b_{2}][a_{2}][00][b_{1}][00][00][b_{0}]
[a_{0}][a_{1}][00][00][b_{1}][00][00][b_{0}]
7+((-1)+(-3))+((-1)+(-3))+1 = 0
7+((-3)+(-1))+(-3) = 0
n=4k+1:
Si ( a = 1r & b = 2n ) ==> ( F=a & V=b )
Si ( a = 2n & b = 1r ) ==> ( V=a & F=b )
[a_{0}][a_{1}][a_{2}][00][00][b_{1}][00][00][b_{0}]
[a_{0}][a_{1}][b_{2}][00][00][b_{1}][00][00][b_{0}]
8+((-1)+(-3))+((-1)+(-3)) = 0
8+((-3)+(-1))+((-3)+(-1)) = 0
n=4k+2
Si ( a = 1r & b = 2n ) ==> ( V=a & F=b )
Si ( a = 2n & b = 1r ) ==> ( F=a & V=b )
[a_{0}][a_{1}][a_{2}][b_{2}][00][00][b_{1}][00][00][b_{0}]
[b_{3}][a_{1}][a_{2}][b_{2}][00][00][b_{1}][00][00][b_{0}]
9+((-1)+(-3))+((-1)+(-3))+(-1) = 0
9+((-3)+(-1))+((-3)+(-1))+((-3)+(-1))+3 = 0
n=4k+3:
Si ( a = 1r & b = 2n ) ==> ( F=a & V=b )
Si ( a = 2n & b = 1r ) ==> ( V=a & F=b )
[a_{0}][b_{3}][a_{2}][a_{3}][b_{2}][00][00][b_{1}][00][00][b_{0}]
[a_{0}][b_{3}][a_{2}][00][b_{2}][00][00][b_{1}][00][00][b_{0}]
10+((-1)+(-3))+((-1)+(-3))+((-1)+(-3))+((-1)+3) = 0
10+((-3)+(-1))+((-3)+(-1))+((-3)+1) = 0
teoria de jocs: joc peó 2-1
n=3k:
Si ( a = 1r & b = 2n ) ==> ( V=a & F=b )
Si ( a = 2n & b = 1r ) ==> ( F=a & V=b )
[a_{0}][b_{2}][a_{2}][b_{1}][00][b_{0}]
[a_{0}][a_{1}][00][b_{1}][00][b_{0}]
5+((-1)+(-2))+((-1)+(-2))+1 = 0
5+((-2)+(-1))+(-2) = 0
n=3k+1:
Si ( a = 1r & b = 2n ) ==> ( F=a & V=b )
Si ( a = 2n & b = 1r ) ==> ( V=a & F=b )
[a_{0}][a_{1}][a_{2}][00][b_{1}][00][b_{0}]
[a_{0}][a_{1}][b_{2}][00][b_{1}][00][b_{0}]
6+((-1)+(-2))+((-1)+(-2)) = 0
6+((-2)+(-1))+((-2)+(-1)) = 0
n=3k+2:
Si ( a = 1r & b = 2n ) ==> ( V=a & F=b )
Si ( a = 2n & b = 1r ) ==> ( F=a & V=b )
[a_{0}][a_{1}][a_{2}][b_{2}][00][b_{1}][00][b_{0}]
[a_{0}][b_{3}][a_{2}][a_{3}][00][b_{1}][00][b_{0}]
7+((-1)+(-2))+((-1)+(-2))+(-1) = 0
7+((-2)+(-1))+((-2)+(-1))+((-2)+(-1))+2 = 0
teoria de jocs: joc peó 1-1
n=2k:
Si ( a = 1r & b = 2n ) ==> ( V=a & F=b )
Si ( a = 2n & b = 1r ) ==> ( F=a & V=b )
[a_{0}][a_{1}][a_{2}][b_{2}][b_{1}][b_{0}]
5+((-1)+(-1))+((-1)+(-1))+(-1) = 0
n=2k+1:
Si ( a = 1r & b = 2n ) ==> ( F=a & V=b )
Si ( a = 2n & b = 1r ) ==> ( V=a & F=b )
[a_{0}][a_{1}][a_{2}][b_{1}][b_{0}]
[a_{0}][a_{1}][b_{2}][b_{1}][b_{0}]
4+((-1)+(-1))+((-1)+(-1)) = 0
Si ( a = 1r & b = 2n ) ==> ( V=a & F=b )
Si ( a = 2n & b = 1r ) ==> ( F=a & V=b )
[a_{0}][a_{1}][a_{2}][b_{2}][b_{1}][b_{0}]
5+((-1)+(-1))+((-1)+(-1))+(-1) = 0
n=2k+1:
Si ( a = 1r & b = 2n ) ==> ( F=a & V=b )
Si ( a = 2n & b = 1r ) ==> ( V=a & F=b )
[a_{0}][a_{1}][a_{2}][b_{1}][b_{0}]
[a_{0}][a_{1}][b_{2}][b_{1}][b_{0}]
4+((-1)+(-1))+((-1)+(-1)) = 0
economia: modelo de línea de la ecuación de primer orden de logaritmo no inverso
f(x) = e^{(m/x)}
ln( f(x) ) = (m/x)
d_{z}[h(z)] + (-1)·( x^{2}/m )·h(z) = 0
h(z) = e^{(x^{2}/m)·z}
( ln(e^{(x^{2}/m)·(m/x)}) ) = x
( ln(e^{(x^{2}/m)·ln( f(x) )}) ) = x
( ln( h( ln(f(x)) ) ) ) = x
m = 3 & x = (3/4)·m ==> ln(f(3/4)) = 4€
d_{z}[h(z)] + (-1)·(3/16)·h(z) = 0
ln(h(4) ) = (3/4)€
ln(f(3/4))·ln(h(4) ) = 3€
m = 5 & x = (1/10)·m ==> ln(f(1/10)) = 50€
d_{z}[h(z)] + (-1)·(1/500)·h(z) = 0
ln(h(50) ) = (1/10)€
ln(f(1/10))·ln(h(50) ) = 5€
matemáticas: modelo de la equación diferencial de primer orden de logaritmo no inverso
f(x) = e^{(m/x^{n})}
ln( f(x) ) = (m/x^{n})
d_{z}[h(z)] + (-1)·( x^{n+1}/m )·h(z) = 0
h(z) = e^{(x^{n+1}/m)·z}
( ln(e^{(x^{n+1}/m)·(m/x^{n})}) ) = x
( ln(e^{(x^{n+1}/m)·ln( f(x) )}) ) = x
( ln( h( ln(f(x)) ) ) ) = x
matemáticas: modelo enésimo de la ecuación diferencial de primer orden
f(x) = e^{(m/x^{n})}
ln( f(x) ) = (m/x^{n})
d_{y}[g(y)] + (-1)·( m/x^{n+1} )·g(y) = 0
g(y) = e^{(m/x^{n+1})·y}
( 1/ln(e^{(m/x^{n+1})·(x^{n}/m)}) ) = x
( 1/ln(e^{(m/x^{n+1})·( 1/ln( f(x) ) )}) ) = x
( 1/ln( g( 1/ln(f(x)) ) ) ) = x
jueves, 16 de enero de 2020
economia: modelo de superficie de la ecuación diferencial de primer orden
f(x) = e^{(m/x^{2})}
ln( f(x) ) = (m/x^{2})
d_{y}[g(y)] + (-1)·( m/x^{3} )·g(y) = 0
g(y) = e^{(m/x^{3})·y}
(1/ln(e^{(m/x^{3})·(x^{2}/m)})) = x
(1/ln(e^{(m/x^{3})·( 1/ln( f(x) ) )})) = x
( 1/ln( g( 1/ln(f(x)) ) ) ) = x
m = 2 cajas & x = 20 cm ==> ( 1/ln( f(20) ) ) = 200€
d_{y}[g(y)] + (-1)·(1/4000)·g(y) = 0
( 1/ln( g(200) ) ) = 20€
m = 3 cajas & x = 60 cm ==> ( 1/ln( f(60) ) ) = 1200€
d_{y}[g(y)] + (-1)·(1/72000)·g(y) = 0
( 1/ln( g(1200) ) ) = 60€
ln( f(x) ) = (m/x^{2})
d_{y}[g(y)] + (-1)·( m/x^{3} )·g(y) = 0
g(y) = e^{(m/x^{3})·y}
(1/ln(e^{(m/x^{3})·(x^{2}/m)})) = x
(1/ln(e^{(m/x^{3})·( 1/ln( f(x) ) )})) = x
( 1/ln( g( 1/ln(f(x)) ) ) ) = x
m = 2 cajas & x = 20 cm ==> ( 1/ln( f(20) ) ) = 200€
d_{y}[g(y)] + (-1)·(1/4000)·g(y) = 0
( 1/ln( g(200) ) ) = 20€
m = 3 cajas & x = 60 cm ==> ( 1/ln( f(60) ) ) = 1200€
d_{y}[g(y)] + (-1)·(1/72000)·g(y) = 0
( 1/ln( g(1200) ) ) = 60€
economia: modelo de línea de la ecuación lineal de primer orden
f(x) = e^{(m/x)}
ln( f(x) ) = (m/x)
d_{y}[g(y)] + (-1)·( m/x^{2} )·g(y) = 0
g(y) = e^{(m/x^{2})·y}
(1/ln(e^{(m/x^{2})·(x/m)})) = x
(1/ln(e^{(m/x^{2})·( 1/ln( f(x) ) )})) = x
( 1/ln( g( 1/ln(f(x)) ) ) ) = x
m = 4 botellas & x = 64 cm ==> ( 1/ln( f(64) ) ) = 16€
d_{y}[g(y)] + (-1)·(1/1024)·g(y) = 0
( 1/ln( g(16) ) ) = 64€
m = 3 botellas & x = 30 cm ==> ( 1/ln( f(30) ) ) = 10€
d_{y}[g(y)] + (-1)·(1/300)·g(y) = 0
( 1/ln( g(10) ) ) = 30€
ln( f(x) ) = (m/x)
d_{y}[g(y)] + (-1)·( m/x^{2} )·g(y) = 0
g(y) = e^{(m/x^{2})·y}
(1/ln(e^{(m/x^{2})·(x/m)})) = x
(1/ln(e^{(m/x^{2})·( 1/ln( f(x) ) )})) = x
( 1/ln( g( 1/ln(f(x)) ) ) ) = x
m = 4 botellas & x = 64 cm ==> ( 1/ln( f(64) ) ) = 16€
d_{y}[g(y)] + (-1)·(1/1024)·g(y) = 0
( 1/ln( g(16) ) ) = 64€
m = 3 botellas & x = 30 cm ==> ( 1/ln( f(30) ) ) = 10€
d_{y}[g(y)] + (-1)·(1/300)·g(y) = 0
( 1/ln( g(10) ) ) = 30€
química: constructores y destructores del catorce-sulfuracético
bi-catorce-sulfuracético fosfado positivo
P=S≡S≡S≡S≡S=P≡P=S≡S≡S≡S≡S=P
P=S≡S≡S≡S≡S=P≡P=S≡S≡S≡S≡S=P
16 destructores + 24 constructores = 8 constructores
bi-catorce-sulfuracético fosfado negativo
P=S≡S≡S≡S≡P=S≡S=P≡S≡S≡S≡S=P
P=S≡S≡S≡S≡P=S≡S=P≡S≡S≡S≡S=P
20 destructores + 12 constructores = 8 destructores
miércoles, 15 de enero de 2020
química: carbur de fósfor
2·P_{2} + 2·C_{2} + e^{-} ==> ( =P≡C-C≡P= ) + ( =C=P≡P=C= )
( =P≡C-C≡P= ) + ( =C=P≡P=C= ) + e^{+} ==> 2·P_{2} + 2·C_{2}
entalpia de reacció:
[ 2·P_{2} ] = 20
[ 2·C_{2} ] = 16
[ ( =P≡C-C≡P= ) ] = 18
[ ( =C=P≡P=C= ) ] = 18
20+16 = 18+18 = 36
química: carbur de nitrogen
2·C_{2} + 2·N_{2} + e^{-} ==> ( =N-C≡C-N= ) + ( =C=N-N=C= )
( =N-C≡C-N= ) + ( =C=N-N=C= ) + e^{+} ==> 2·C_{2} + 2·N_{2}
entalpia de reacció:
[ 2·C_{2} ] = 16
[ 2·N_{2} ] = 12
[ ( =N-C≡C-N= ) ] = 14
[ ( =C=N-N=C= ) ] = 14
16+12 = 14+14 = 28
( =N-C≡C-N= ) + ( =C=N-N=C= ) + e^{+} ==> 2·C_{2} + 2·N_{2}
entalpia de reacció:
[ 2·C_{2} ] = 16
[ 2·N_{2} ] = 12
[ ( =N-C≡C-N= ) ] = 14
[ ( =C=N-N=C= ) ] = 14
16+12 = 14+14 = 28
química: constructores y destructores del catorce-acético
bi-catorce-acético nitrogenado positivo
N-C=C=C=C=C=N-N=C=C=C=C=C-N
N-C=C=C=C=C=N-N=C=C=C=C=C-N
12 destructores + 16 constructores = 4 constructores
bi-catorce-acético nitrogenado negativo
N-C=C=C=C=N-C≡C-N=C=C=C=C-N
N-C=C=C=C=N-C≡C-N=C=C=C=C-N
12 destructores + 8 constructores = 4 destructores
bi-catorce-acético fosfado positivo
P-C=C=C=C=C=P≡P=C=C=C=C=C-P
P-C=C=C=C=C=P≡P=C=C=C=C=C-P
12 destructores + 16 constructores = 4 constructores
bi-catorce-acético fosfado negativo
P-C=C=C=C=P≡C-C≡P=C=C=C=C-P
P-C=C=C=C=P≡C-C≡P=C=C=C=C-P
12 destructores + 8 constructores = 4 destructores
química: constructores y destructores del deca-benceno
bi-deca-benceno nitrogenado positivo
N-C=C-C=C=C=C-C=C-N
N-C=C-C=C=C=C-C=C-N
4 destructores + 12 constructores = 8 constructores
bi-deca-benceno nitrogenado negativo
N-C=C-C=N-N=C-C=C-N
N-C=C-C=N-N=C-C=C-N
8 destructores + 0 constructores = 8 destructores
química: constructores y destructores de centro
doce-glicerina tetra-nitrogenada
N-C=C-C=C-N-N-C=C-C=C-N
4 destructores + 2 constructores = 2 destructores
diez-y-seis-glicerina tetra-nitrogenada
N-C=C-C=C-C=C-N-N-C=C-C=C-C=C-N
4 destructores + 6 constructores = 2 constructores
vente-y-cuatro-glicerina octo-nitrogenada
N-C=C-C=C-N-N-C=C-C=C-N-N-C=C-C=C-N-N-C=C-C=C-N
8 destructores + 4 constructores = 4 destructores
trenta-y-dos-glicerina octo-nitrogenada
N-C=C-C=C-C=C-N-N-C=C-C=C-C=C-N-N-C=C-C=C-C=C-N-N-C=C-C=C-C=C-N
8 destructores + 12 constructores = 4 constructores
química: constructores y destructores
bi-hexa-glicerina nitrogenada
N-C=C-C=C-N
N-C=C-C=C-N
4 destructores + 2 constructores = 2 destructores
bi-octo-glicerina nitrogenada
N-C=C-C=C-C=C-N
N-C=C-C=C-C=C-N
4 destructores + 6 constructores = 2 constructores
N-C=C-C=C-N
N-C=C-C=C-N
4 destructores + 2 constructores = 2 destructores
bi-octo-glicerina nitrogenada
N-C=C-C=C-C=C-N
N-C=C-C=C-C=C-N
4 destructores + 6 constructores = 2 constructores
martes, 14 de enero de 2020
ecuació diferencial producte derivat
d_{x}[x·f(x)] = ax
f(x)+x·d_{x}[f(x)] = ax
f(x) = (a/2)·x
d_{x}[x·f(x)] = g(x)
f(x)+x·d_{x}[f(x)] = g(x)
f(x) = (1/x)·∫ [ g(x) ] d[x]
d_{x}[x^{n}·f(x)] = g(x)
f(x) = (1/x^{n})·∫ [ g(x) ] d[x]
f(x)+x·d_{x}[f(x)] = ax
f(x) = (a/2)·x
d_{x}[x·f(x)] = g(x)
f(x)+x·d_{x}[f(x)] = g(x)
f(x) = (1/x)·∫ [ g(x) ] d[x]
d_{x}[x^{n}·f(x)] = g(x)
f(x) = (1/x^{n})·∫ [ g(x) ] d[x]
coment dual-françé
el que en-és de caminuar per la foscurité,
ne en-és de ver a don-que va.
tu ne en-ets de ver a don-que vaitx.
je ne en-soy de ver a don-que vas.
el que en-és de caminuar per el silence,
ne en-és de oir a don-que va.
tu ne en-ets de oir a don-que vaitx.
je ne en-soy de oir a don-que vas.
ne en-és de ver a don-que va.
tu ne en-ets de ver a don-que vaitx.
je ne en-soy de ver a don-que vas.
el que en-és de caminuar per el silence,
ne en-és de oir a don-que va.
tu ne en-ets de oir a don-que vaitx.
je ne en-soy de oir a don-que vas.
dual-françé
je en-soy de pensuar.
tu en-ets de pensuar.
ell-il en-és de pensuar en celui-çí demostraçón de içí.
ella-il en-és de pensuar en celui-lá demostraçón de ilá.
nus-uà e-sóms de pensuar.
vus-uà e-sous de pensuar.
ell-ils e-son de pensuar.
ella-ils e-son de pensuar.
tu en-ets de pensuar.
ell-il en-és de pensuar en celui-çí demostraçón de içí.
ella-il en-és de pensuar en celui-lá demostraçón de ilá.
nus-uà e-sóms de pensuar.
vus-uà e-sous de pensuar.
ell-ils e-son de pensuar.
ella-ils e-son de pensuar.
micro-economia optimizatció de una esfera
B(r) = (1/10pi)·(4pi)·( p·r^{2}+(-1)·m·(1/3)·r^{3} )
d_{x}[B(r)] = 2p·r+(-1)·m·r^{2}
mr = 2p
r = ( (2p)/m )
B( (2p)/m ) = (4pi)( (2/3)(p^{3}/m^{2}) )
pelota de tenis:
p=3 & m=2
B(3) = (1/10pi)·(18pi) = 1.8€
B(r) = (1/10pi)·( F(r)+(-1)·V(r) )
(1/10pi)·F(3) = 2.7€
(1/10pi)·V(3) = 0.9€
d_{x}[B(r)] = 2p·r+(-1)·m·r^{2}
mr = 2p
r = ( (2p)/m )
B( (2p)/m ) = (4pi)( (2/3)(p^{3}/m^{2}) )
pelota de tenis:
p=3 & m=2
B(3) = (1/10pi)·(18pi) = 1.8€
B(r) = (1/10pi)·( F(r)+(-1)·V(r) )
(1/10pi)·F(3) = 2.7€
(1/10pi)·V(3) = 0.9€
micro-economia optimització de una caisha
B(x,y,z) = (1/4000)·( 2·p·( xy+yz+zx )+(-1)·m·xyz )
d_{x}[B(x,y,z)] = 2·p·( y+z )+(-1)·m·yz
d_{y}[B(x,y,z)] = 2·p·( z+x )+(-1)·m·zx
d_{z}[B(x,y,z)] = 2·p·( x+y )+(-1)·m·xy
2·p·( y+z )=m·yz
2·p·( z+x )=m·zx
2·p·( x+y )=m·xy
( y+z )=m
( z+x )=m
( x+y )=m
2·p=yz
2·p=zx
2·p=xy
x=(m/2)
y=(m/2)
z=(m/2)
p=(1/2)·(m/2)^{2}
B( (m/2) , (m/2) , (m/2) ) = 3·(m/2)^{4}+(-1)·2·(m/2)^{4}
B( (m/2) , (m/2) , (m/2) ) = (m/2)^{4}
bombones
m=40 <==> ( x=20 & y=20 & z=20 )
B( 20 , 20 , 20 ) = 4€
B( x , y , z ) = (1/4000)·( F( x , y , z ) +(-1)·V( x , y , z ) )
(1/4000)·F( 20 , 20 , 20 ) = 12€
(1/4000)·V( 20 , 20 , 20 ) = 8€
d_{x}[B(x,y,z)] = 2·p·( y+z )+(-1)·m·yz
d_{y}[B(x,y,z)] = 2·p·( z+x )+(-1)·m·zx
d_{z}[B(x,y,z)] = 2·p·( x+y )+(-1)·m·xy
2·p·( y+z )=m·yz
2·p·( z+x )=m·zx
2·p·( x+y )=m·xy
( y+z )=m
( z+x )=m
( x+y )=m
2·p=yz
2·p=zx
2·p=xy
x=(m/2)
y=(m/2)
z=(m/2)
p=(1/2)·(m/2)^{2}
B( (m/2) , (m/2) , (m/2) ) = 3·(m/2)^{4}+(-1)·2·(m/2)^{4}
B( (m/2) , (m/2) , (m/2) ) = (m/2)^{4}
bombones
m=40 <==> ( x=20 & y=20 & z=20 )
B( 20 , 20 , 20 ) = 4€
B( x , y , z ) = (1/4000)·( F( x , y , z ) +(-1)·V( x , y , z ) )
(1/4000)·F( 20 , 20 , 20 ) = 12€
(1/4000)·V( 20 , 20 , 20 ) = 8€
micro-economia optimizar un rollo de papel
B(r,z) = (1/10pi)·( p·(2pi)·r·z+(-1)·m·(pi)·r^{2}·z )
d_{r}[B(r,z)] = p·(2pi)·z+(-1)·m·(2pi)·r·z
p = m·r
r = (p/m)
B( (p/m) , z ) = (1/10)·( p·(2pi)·(p/m)·z+(-1)·m·(pi)·(p/m)^{2}·z )
B( (p/m) , z ) = (1/10)·( (p^{2}/m)·(pi)·z )
papel higiénico:
z=10 & p=(5céntimos/(cm)^{2}) & m=(1céntimo/(cm)^{3})
B( 5 , 10 ) = 25·céntimos = 0.25€
B(r,z) = (1/10pi)·( F(r,z)+(-1)·V(r,z) )
(1/10pi)·F( 5 , 10 ) = 50·céntimos = 0.50€
(1/10pi)·V( 5 , 10 ) = 25·céntimos = 0.25€
papel de aluminio:
z=30 & p=(6céntimos/(cm)^{2}) & m=(2céntimo/(cm)^{3})
B( 3 , 30 ) = 54·céntimos = 0.54€
B(r,z) = (1/10pi)·( F(r,z)+(-1)·V(r,z) )
(1/10pi)·F( 3 , 30 ) = 108·céntimos = 1.08€
(1/10pi)·V( 3 , 30 ) = 54·céntimos = 0.54€
d_{r}[B(r,z)] = p·(2pi)·z+(-1)·m·(2pi)·r·z
p = m·r
r = (p/m)
B( (p/m) , z ) = (1/10)·( p·(2pi)·(p/m)·z+(-1)·m·(pi)·(p/m)^{2}·z )
B( (p/m) , z ) = (1/10)·( (p^{2}/m)·(pi)·z )
papel higiénico:
z=10 & p=(5céntimos/(cm)^{2}) & m=(1céntimo/(cm)^{3})
B( 5 , 10 ) = 25·céntimos = 0.25€
B(r,z) = (1/10pi)·( F(r,z)+(-1)·V(r,z) )
(1/10pi)·F( 5 , 10 ) = 50·céntimos = 0.50€
(1/10pi)·V( 5 , 10 ) = 25·céntimos = 0.25€
papel de aluminio:
z=30 & p=(6céntimos/(cm)^{2}) & m=(2céntimo/(cm)^{3})
B( 3 , 30 ) = 54·céntimos = 0.54€
B(r,z) = (1/10pi)·( F(r,z)+(-1)·V(r,z) )
(1/10pi)·F( 3 , 30 ) = 108·céntimos = 1.08€
(1/10pi)·V( 3 , 30 ) = 54·céntimos = 0.54€
economia: simetria-dual de consumo segun un capital producto lineal en no uno
F(x,y) = (n·x)·(m·y)+(-1)·h( px+qy+(-k) ) & px+qy=k
d_{x}[F(x,y)] = n(my)+(-1)·hp
d_{y}[F(x,y)] = m(nx)+(-1)·hq
nmy=hp
mnx=hq
nmyx=hpx
mnxy=hqy
nmyx+mnxy=hk
2·mnxy=hk
( x=( e^{n}/n ) & y=( e^{m}/m ) ) <==> 2·e^{n}e^{m}=hk
si h=2·( e^{k}/k ) ==>
e^{n}e^{m}=e^{k}
( n=( k+(-j) ) & m=j )
G( (e^{n}/n ) , (e^{m}/m ) ) = e^{n}·e^{m}
economia: simetria-dual de consumo segun un capital producto lineal
F(x,y) = (e^{n}·x)·(e^{m}·y)+(-1)·h( px+qy+(-k) ) & px+qy=k
d_{x}[F(x,y)] = e^{n}(e^{m}y)+(-1)·hp
d_{y}[F(x,y)] = e^{m}(e^{n}x)+(-1)·hq
e^{n}e^{m}y=hp
e^{m}e^{n}x=hq
e^{n}e^{m}yx=hpx
e^{m}e^{n}xy=hqy
e^{n}e^{m}yx+e^{m}e^{n}xy=hk
2·e^{n}e^{m}xy=hk
( x=1 & y=1 ) <==> 2·e^{n}e^{m}=hk
si h=2·( e^{k}/k ) ==>
e^{n}e^{m}=e^{k}
( n=( k+(-j) ) & m=j )
G( 1 , 1 ) = e^{n}·e^{m}
lunes, 13 de enero de 2020
economia: simetria-dual de consumo segun un capital producto potencial
F(x,y) = x^{n}·y^{m}+(-1)·h( px+qy+(-k) ) & px+qy=k
d_{x}[F(x,y)] = nx^{(n+(-1))}·y^{m}+(-1)·hp
d_{y}[F(x,y)] = my^{(m+(-1))}·x^{n}+(-1)·hq
nx^{(n+(-1))}·y^{m}=hp
my^{(m+(-1))}·x^{n}=hq
nx^{n}·y^{m}=hpx
my^{m}·x^{n}=hqy
n·x^{n}·y^{m}+m·x^{n}·y^{m}=hk
(n+m)·x^{n}·y^{m}=hk
( x=1 & y=1 ) <==> n+m=hk
si h=1 ==>
( n=( k+(-j) ) & m=j )
G( 1 , 1 ) = 1
economia: simetria-dual de consumo segun un capital exponencial
F(x,y) = e^{nx}+e^{my}+(-1)·h( px+qy+(-k) ) & px+qy=k
d_{x}[F(x,y)] = ne^{nx}+(-1)·hp
d_{y}[F(x,y)] = me^{my}+(-1)·hq
ne^{nx}=hp
me^{my}=hq
nxe^{nx}=hpx
mye^{my}=hqy
nxe^{nx}+mye^{my}=hk
x=( (k+(-j))/n )
y=( j/m )
(k+(-j))e^{k+(-j)}+je^{j}=hk
si h=( (k+(-j))e^{k+(-j)}+je^{j})/k ) ==>
( x=1 & y=1 ) <==> ( n=( k+(-j) ) & m=j )
G( 1 , 1 ) = e^{n}+e^{m}
economia: simetria-dual de consumo segun un capital logarítmica
F(x,y) = n·ln(x)+m·ln(y)+(-1)·h( px+qy+(-k) ) & px+qy=k
d_{x}[F(x,y)] = n·(1/x)+(-1)·hp
d_{y}[F(x,y)] = m·(1/y)+(-1)·hq
n·(1/x)=hp
m·(1/y)=hq
n=hpx
m=hqy
n+m=hk
si h=1 ==>
n=k+(-j)
m=j
G( n/p , m/q ) = n·ln(n/p)+m·ln(m/q)
d_{x}[F(x,y)] = n·(1/x)+(-1)·hp
d_{y}[F(x,y)] = m·(1/y)+(-1)·hq
n·(1/x)=hp
m·(1/y)=hq
n=hpx
m=hqy
n+m=hk
si h=1 ==>
n=k+(-j)
m=j
G( n/p , m/q ) = n·ln(n/p)+m·ln(m/q)
economia simetria-dual de consumo segun un capital lineal
F(x,y) = nx+my+(-1)·h( px+qy+(-k) ) & px+qy = k
d_{x}[F(x)] = n+(-1)hp
d_{y}[F(x)] = m+(-1)hq
n=hp
m=hq
nx=hpx
my=hqy
nx+my=hk
si h=1 ==>
x=( (k+(-j))/n )
y=( j/m )
( x=1 & y=1 ) <==> ( n = ( k+(-j) ) & m = j )
G( 1 , 1 ) = n+m
d_{x}[F(x)] = n+(-1)hp
d_{y}[F(x)] = m+(-1)hq
n=hp
m=hq
nx=hpx
my=hqy
nx+my=hk
si h=1 ==>
x=( (k+(-j))/n )
y=( j/m )
( x=1 & y=1 ) <==> ( n = ( k+(-j) ) & m = j )
G( 1 , 1 ) = n+m
economia simetria-dual de consumo segun un capital potencial
F(x,y) = x^{n}+y^{m}+(-1)·h( px+qy+(-k) ) & px+qy = k
d_{x}[F(x,y)] = nx^{n+(-1)}+(-1)·hp
d_{y}[F(x,y)] = my^{m+(-1)}+(-1)·hq
nx^{n+(-1)}=hp
my^{m+(-1)}=hq
nx^{n}=hpx
my^{m}=hqy
nx^{n}+my^{m}=hk
x=( ((k+(-j))h)/n )^{(1/n)}
y=( (jh)/m )^{(1/m)}
Si h=1 ==>
x=( (k+(-j))/n )^{(1/n)}
y=( j/m )^{(1/m)}
( x=1 & y=1 ) <==> ( n=( k+(-j) ) & m=j )
G( 1 , 1 ) = 2
d_{x}[F(x,y)] = nx^{n+(-1)}+(-1)·hp
d_{y}[F(x,y)] = my^{m+(-1)}+(-1)·hq
nx^{n+(-1)}=hp
my^{m+(-1)}=hq
nx^{n}=hpx
my^{m}=hqy
nx^{n}+my^{m}=hk
x=( ((k+(-j))h)/n )^{(1/n)}
y=( (jh)/m )^{(1/m)}
Si h=1 ==>
x=( (k+(-j))/n )^{(1/n)}
y=( j/m )^{(1/m)}
( x=1 & y=1 ) <==> ( n=( k+(-j) ) & m=j )
G( 1 , 1 ) = 2
micro-economia supermercado
un supermercado tiene unos costes en camión de alimentos de mx^{3},
optimizar el precio de los alimentos n si los compra a precio p:
B(x) = (n+(-p))·x+(-1)·mx^{3}
d_{x}[B(x)] = (n+(-p))+(-1)·(3mx^{2})
d_{x}[B(x)] = 0 <==> x = ( (n+(-p))/3m )^{(1/2)}
x=1<==> 3m=(n+(-p))
( m=10€ de gasolina & 200€ la planta & n=230€ la planta )
( m=15€ de gasolina & 200€ la planta & n=245€ la planta )
( m=20€ de gasolina & 200€ la planta & n=260€ la planta )
B(1) = (n+(-p))+(-1)·m
B(1) = 2·m
micro-economia de coste cuadrático
una plantación tiene unos costes en agua de qx^{2},
optimizar el precio de la planta:
B(x) = px+(-1)·qx^{2}
d_{x}[B(x)] = p+(-1)·(2qx)
d_{x}[B(x)] = 0 <==> x = ( p/2q )
x=1<==> 2q=p
( m=100€ de agua & p=200€ la planta )
( m=150€ de agua & p=300€ la planta )
( m=200€ de agua & p=400€ la planta )
B(1) = p+(-1)·q
B(1) = q
micro-economia de coste cúbico
una empresa de gas tiene unos costes en camión de bombonas de mx^{3},
optimizar el precio de la bombona de gas:
B(x) = px+(-1)·mx^{3}
d_{x}[B(x)] = p+(-1)·(3mx^{2})
d_{x}[B(x)] = 0 <==> x = ( p/3m )^{(1/2)}
x=1<==> 3m=p
( m=10€ de gasolina & p=30€ la bombona de gas )
( m=15€ de gasolina & p=45€ la bombona de gas )
( m=20€ de gasolina & p=60€ la bombona de gas )
B(1) = p+(-1)·m
B(1) = 2·m
micro-economia
f(x) = px <==> preu per unitat.
g(x) = qx^{2} <==> preu per superficie.
h(x) = mx^{3} <==> preu per volum.
d_{x}[f(x)] = p
d_{x}[g(x)] = 2qx
d_{x}[h(x)] = 3mx^{2}
g(x) = qx^{2} <==> preu per superficie.
h(x) = mx^{3} <==> preu per volum.
d_{x}[f(x)] = p
d_{x}[g(x)] = 2qx
d_{x}[h(x)] = 3mx^{2}
palmitato de sodio y agua
2n·( NaC_{m}N_{2m+(-2)}H_{2m+1} ) + 4n·H_{2}O + e^{-} ==> ...
... 2n·( C_{m}N_{2m+(-2)}H_{2m}(OH)_{2} ) + 2n·H_{2} + 2n·NaH
2n·( C_{m}N_{2m+(-2)}H_{2m}(OH)_{2} ) + 2n·H_{2} + 2n·NaH + e^{+} ==> ...
... 2n·( NaC_{m}N_{2m+(-2)}H_{2m+1} ) + 4n·H_{2}O
[ 2n·( NaC_{m}N_{2m+(-2)}H_{2m+1} ) ] = 20n
[ 4n·H_{2}O ] = 12n
[ 2n·( C_{m}N_{2m+(-2)}H_{2m}(OH)_{2} ) ] = 24n
[ 2n·H_{2} ] = 4n
[ 2n·NaH ] = 4n
20n+12n = 24n+4n+4n = 32n
... 2n·( C_{m}N_{2m+(-2)}H_{2m}(OH)_{2} ) + 2n·H_{2} + 2n·NaH
2n·( C_{m}N_{2m+(-2)}H_{2m}(OH)_{2} ) + 2n·H_{2} + 2n·NaH + e^{+} ==> ...
... 2n·( NaC_{m}N_{2m+(-2)}H_{2m+1} ) + 4n·H_{2}O
[ 2n·( NaC_{m}N_{2m+(-2)}H_{2m+1} ) ] = 20n
[ 4n·H_{2}O ] = 12n
[ 2n·( C_{m}N_{2m+(-2)}H_{2m}(OH)_{2} ) ] = 24n
[ 2n·H_{2} ] = 4n
[ 2n·NaH ] = 4n
20n+12n = 24n+4n+4n = 32n
domingo, 12 de enero de 2020
politja doble fixada en un extrem en un sostre y estirada per l'altre
( m or q ) esta en la politja central no extrem de la corda.
politja doble amb una força constant en el extrem de la corda.
m·d_{tt}^{2}[y(t)] = q·g+(-1)·( F/2 )
politja doble amb una molla en el extrem de la corda.
m·d_{tt}^{2}[y(t)] = q·g+(-1)·( (k/2)·y(t) )
politja doble amb una força dependent del temps en el extrem de la corda.
m·d_{tt}^{2}[y(t)] = q·g+(-1)·( F(t)/2 )
politja doble amb una càrrega en el extrem de la corda.
m·d_{tt}^{2}[y(t)] = q·g+(-1)·( T/2 )
m_{1}·d_{tt}^{2}[y_{1}(t)] = (-1)·q_{1}·g+T
(m_{1}+2m)·d_{tt}^{2}[y_{1}(t)] = 2·q·g+(-1)·q_{1}·g
T = ( (m_{1}(2q)+(2m)q_{1})/(m_{1}+2m) )·g
Si m_{1} = 0 ==> T = q_{1}·g
(-T) = 2m·( (2·q·g+(-1)·q_{1}·g)/(m_{1}+2m) )+( (-1)·(m_{1}+2m)·2qg/(m_{1}+2m) )
T = m_{1}·( (2·q·g+(-1)·q_{1}·g)/(m_{1}+2m) )+( (m_{1}+2m)·q_{1}g/(m_{1}+2m) )
politja simple
m_{1}·d_{tt}^{2}[y_{1}(t)] = ( q_{1}·g+(-1)·T )
m_{2}·d_{tt}^{2}[y_{2}(t)] = ( (-1)·q_{2}·g+T )
(m_{1}+m_{2})·d_{tt}^{2}[y_{1}(t)] = ( q_{1}+(-1)q_{2} )·g
T = ( (m_{2}·q_{1}+m_{1}·q_{2})/(m_{1}+m_{2}) )·g
(-T) = m_{1}·( ( q_{1}+(-1)q_{2} )/(m_{1}+m_{2}) )·g+...
...( (-1)·((m_{1}+m_{2})·q_{1})/(m_{1}+m_{2}) )·g
T = m_{2}·( ( q_{1}+(-1)q_{2} )/(m_{1}+m_{2}) )·g+...
...( ((m_{1}+m_{2})·q_{2})/(m_{1}+m_{2}) )·g
politja simple sense càrrega estirada per una força constant.
m·d_{tt}^{2}[y(t)] = ( q_{1}·g+q_{2}·g )+(-1)·F
politja simple sense càrrega penjada de una molla.
m·d_{tt}^{2}[y(t)] = ( q_{1}·g+q_{2}·g )+(-1)·k·y(t)
politja simple sense càrrega estirada per una força dependent del temps.
m·d_{tt}^{2}[y(t)] = ( q_{1}·g+q_{2}·g )+(-1)·F(t)
politja triple
( m or q ) esta en la politja central.
politja triple amb dos forçes constants en els extrems de la corda.
m·d_{tt}^{2}[y(t)] = q·g+(-1)·( F_{1}+F_{2} )
politja triple amb dos molles en els extrems de la corda.
m·d_{tt}^{2}[y(t)] = q·g+(-1)·( k_{1}·y(t)+k_{2}·y(t) )
politja triple amb dos forçes dependents del temps en els extrems de la corda.
m·d_{tt}^{2}[y(t)] = q·g+(-1)·( F_{1}(t)+F_{2}(t) )
politja triple amb dos càrregues en els extrems de la corda.
m·d_{tt}^{2}[y(t)] = q·g+(-1)·( T_{1}+T_{2} )
m_{1}·d_{tt}^{2}[y_{1}(t)] = (-1)·q_{1}·g+T_{1}
m_{2}·d_{tt}^{2}[y_{2}(t)] = (-1)·q_{2}·g+T_{2}
(m_{1}+m·( (n+(-k))/n ))·d_{tt}^{2}[y_{1}(t)] = q·( (n+(-k))/n )·g+(-1)·q_{1}·g
(m_{2}+m·( k/n ))·d_{tt}^{2}[y_{2}(t)] = q·( k/n )·g+(-1)·q_{2}·g
T_{1} = ( (m_{1}q·( (n+(-k))/n )+q_{1}m·( (n+(-k))/n ))/(m_{1}+m( (n+(-k))/n) ) )·g
T_{2} = ( (m_{2}q·( k/n )+q_{2}m·( k/n ))/(m_{2}+m( k/n )) )·g
si m_{1}=0 ==> T_{1}=q_{1}g
si m_{2}=0 ==> T_{2}=q_{2}g
politja triple amb dos forçes constants en els extrems de la corda.
m·d_{tt}^{2}[y(t)] = q·g+(-1)·( F_{1}+F_{2} )
politja triple amb dos molles en els extrems de la corda.
m·d_{tt}^{2}[y(t)] = q·g+(-1)·( k_{1}·y(t)+k_{2}·y(t) )
politja triple amb dos forçes dependents del temps en els extrems de la corda.
m·d_{tt}^{2}[y(t)] = q·g+(-1)·( F_{1}(t)+F_{2}(t) )
politja triple amb dos càrregues en els extrems de la corda.
m·d_{tt}^{2}[y(t)] = q·g+(-1)·( T_{1}+T_{2} )
m_{1}·d_{tt}^{2}[y_{1}(t)] = (-1)·q_{1}·g+T_{1}
m_{2}·d_{tt}^{2}[y_{2}(t)] = (-1)·q_{2}·g+T_{2}
(m_{1}+m·( (n+(-k))/n ))·d_{tt}^{2}[y_{1}(t)] = q·( (n+(-k))/n )·g+(-1)·q_{1}·g
(m_{2}+m·( k/n ))·d_{tt}^{2}[y_{2}(t)] = q·( k/n )·g+(-1)·q_{2}·g
T_{1} = ( (m_{1}q·( (n+(-k))/n )+q_{1}m·( (n+(-k))/n ))/(m_{1}+m( (n+(-k))/n) ) )·g
T_{2} = ( (m_{2}q·( k/n )+q_{2}m·( k/n ))/(m_{2}+m( k/n )) )·g
si m_{1}=0 ==> T_{1}=q_{1}g
si m_{2}=0 ==> T_{2}=q_{2}g
Suscribirse a:
Entradas (Atom)