sábado, 20 de noviembre de 2021

ecuacions de camp

div[E(x,y,z)] = d_{xyz}^{3}[ anti-potencial[E(x,y,z)] ]

anti-div[E(x,y,z)] = d_{xyz}^{3}[ potencial[E(x,y,z)] ]


anti-potencial[ rot[E(x,y,z)] ] = 0

potencial[ anti-rot[E(x,y,z)] ] = 0


anti-potencial[ grad[ potencial[ rot[E(x,y,z)] ] ] ] = 0

potencial[ anti-grad[ anti-potencial[ anti-rot[E(x,y,z)] ] ] ] = 0


int[ anti-rot[E(x,y,z)] ]d[t] [o]-[o(t)o]-[o] int[ <x,y,z> ]d[t] = 0

int[ rot[E(x,y,z)] ]d[t] [o]-[o(t)o]-[o] int[ <yz,zx,xy> ]d[t] = 0


d_{t}[E(x,y,z)] = div-vectorial[ E(x,y,z) ]· ...

... < d_{t}[x],d_{t}[y],d_{t}[z] >

d_{tt}^{2}[E(x,y,z)] = anti-div-vectorial[ E(x,y,z) ]· ...

.. < d_{t}[y]d_{t}[z],d_{t}[z]d_{t}[x],d_{t}[x]d_{t}[y] >


d_{t...t}^{n}[E(x,y,z)] = n-div-vectorial[ E(x,y,z) ]·...

... < d_{t}[x]^{n},d_{t}[y]^{n},d_{t}[z]^{n} >

d_{tt...tt}^{2n}[E(x,y,z)] = anti-n-div-vectorial[ E(x,y,z) ]· ...

... < d_{t}[y]^{n}d_{t}[z]^{n},d_{t}[z]^{n}d_{t}[x]^{n},d_{t}[x]^{n}d_{t}[y]^{n} >


ecuació de ones:

m·d_{tt}^{2}[x_{k}] = q·( E(x_{k})+(-1)·E(d_{t}[x_{k}]·t) )

x_{k} = c_{k}t

d_{t...t}^{n}[ E(x,y,z)+(-1)·E(d_{t}[x]·t,d_{t}[y]·t,d_{t}[z]·t) ] = ...

... n-div-vectorial[ E(x,y,z)+(-1)·E(d_{t}[x]·t,d_{t}[y]·t,d_{t}[z]·t) ]· ...

... < (c_{x})^{n},(c_{y})^{n},(c_{z})^{n} >

d_{tt...tt}^{2n}[ E(x,y,z)+(-1)·E(d_{t}[x]·t,d_{t}[y]·t,d_{t}[z]·t) ] = ...

... anti-n-div-vectorial[ E(x,y,z)+(-1)·E(d_{t}[x]·t,d_{t}[y]·t,d_{t}[z]·t) ]· ...

... < (c_{y}c_{z})^{n},(c_{z}c_{x})^{n},(c_{x}c_{y})^{n} >


E(x) = (ct)^{n}

( n!/(n+(-k))! )·c^{n}·t^{n+(-k)}+(-1)·( n!/(n+(-k))! )·c^{n}·t^{n+(-k)} = ...

... ( ( n!/(n+(-k))! )·(ct)^{n+(-k)}+(-1)·( n!/(n+(-k))! )·(ct)^{n+(-k)} )·c^{k}

jueves, 18 de noviembre de 2021

suma superior y suma inferior integral

[As][ s > 0 ==> [En_{0}][ n_{0}€N & [An][ n > n_{0} ==> ...

... | S( F(x),a_{n} )+(-1)·S( F(x),b_{n} ) | < s ] ] ].

S( F(x),a_{n} ) = F(x)+a_{n}

S( F(x),b_{n} ) = F(x)+b_{n}

lim[a_{n}] = lim[b_{n}] <==> f(x) es integrable.


Si ( sum[ f_{m}(x) ] és integrable & g(x) és integrable ==> ...

... sum[ f_{m}(x) ]+g(x) és integrable.

| S( sum[ F_{m}(x) ]+G(x),(m+1)·a_{n} )+...

... (-1)·S( sum[ F_{m}(x) ]+G(x),(m+1)·b_{n} ) | = ...

... | ( sum[ F_{m}(x) ]+m·a_{n} )+(-1)·( sum[ F_{m}(x) ]+m·b_{n} )+...

... ( G(x)+a_{n} )+(-1)·( G(x)+b_{n} ) | < s_{m}+s_{1}= s_{m+1}


Si f(x) és integrable ==> k·f(x) és integrable.

| S( k·F(x),k·a_{n} )+(-1)·S( k·F(x),k·b_{n} ) | = ...

... |k|·| ( F(x)+a_{n} )+(-1)·( F(x)+b_{n} ) | < |k|·s_{0} = s


Si ( u·f(x) és integrable & v·g(x) és integrable ==> ...

... u·f(x)+v·g(x) és integrable.

| S( u·F(x)+v·G(x),(u+v)·a_{n} )+(-1)·S( u·F(x)+v·G(x),(u+v)·b_{n} ) | [< ...

... |u|·| ( F(x)+a_{n} )+(-1)·( F(x)+b_{n} ) |+...

... |v|·| ( G(x)+a_{n} )+(-1)·( G(x)+b_{n} ) | < |u|·s_{1}+|v|·s_{2}= s


Si f(x) és continua ==> f(x) és integrable.

| S( F(x),a_{n} )+(-1)·S( F(x),b_{n} ) | [< ...

... | S( F(x+h),b_{n} )+(-1)·S( F(x+h),a_{n} )+S( F(x),a_{n} )+(-1)·S( F(x),b_{n} ) | = ...

... | k+(-k) | < s


Si f(x) és uniformament continua ==> f(x) és integrable.

| S( F(x),a_{n} )+(-1)·S( F(x),b_{n} ) | [< ...

... | S( F(y),b_{n} )+(-1)·S( F(y),a_{n} )+S( F(x),a_{n} )+(-1)·S( F(x),b_{n} ) | = ...

... | ( F(x)+(-1)·F(y) )+(-1)·( F(x)+(-1)·F(y) ) | = | k+(-k) | < s


[Ex_{n}][ f(x) = F(x)+lim[x_{n}] ] <==> f(x) és integrable.

Es defienish: x_{n} = f(x_{n})+(-1)·F(x_{n})

| S( F(x),a_{n} )+(-1)·S( F(x),b_{n} ) | [< ...

... | S( F(x),x_{n} )+(-1)·S( F(x),x_{n} ) | < s


Si [Ax][ ( x€Q ==> f(x) = x ) & ( x€I ==> f(x) = 1+(-x) ) ] ==> ...

... f(x) és integrable en x = (1/2) & x = 0 & x = 1.

| S( (1/2)·x^{2},a_{n} )+(-1)·S( x+(-1)·(1/2)·x^{2},b_{n} ) | < s


Si [Ax][ ( x€Q ==> f(x) = 0 ) & ( x€I ==> f(x) = 1 ] ==> f(x) és integrable en x = k.

| S( k,a_{n} )+(-1)·S( x,b_{n} ) | < s


Si [Ax][ ( x€Q ==> f(x) = h(x) ) & ( x€I ==> f(x) = h(x)+p ] ==> ...

... f(x) no és integrable [Ax][ x != 0 ].

| S( H(x),a_{n} )+(-1)·S( H(x)+px,b_{n} ) | = | px | >] s


Si [Ax][ ( x€Q ==> f(x) = h(x) ) & ( x€I ==> f(x) = h(x)+(1/x) ] ==> ...

... f(x) no és integrable [Ax][ x != 1 ].

| S( H(x),a_{n} )+(-1)·S( H(x)+ln(x),b_{n} ) | = | ln(x) | >] s


Si [Ax][ ( x€Q ==> f(x) = h(x) ) & ( x€I ==> f(x) = h(x)+e^{x} ] ==> ...

... f(x) no és integrable [Ax][ x != ln(0) ].

| S( H(x),a_{n} )+(-1)·S( H(x)+e^{x},b_{n} ) | = | e^{x} | >] s


F(x,y) = (x·y)+(x+y)

Jugar a ganar:

( acción buena <==> reacción buena ) <==> < 1,1 >

F(1,1) = 3

Jugar a no ganar:

( acción mala <==> reacción mala ) <==> < (-1),(-1) >

F((-1),(-1)) = (-1)

Jugar a ganar:

( constructor <==> sin reacción ) <==> < 1,0 >

F(1,0) = 2

Jugar a no ganar:

( destructor <==> sin reacción ) <==> < (-1),0 >

F((-1),0) = (-2)


La funziutna creshetzi-ten-dut-za,

en l'inteval-koak tancatzi-ten-dut-zatu-dut.

[Ax][ x€[0,a]_{K} ==> f(x) = x^{2} ]

La funziutna decreshetzi-ten-dut-za,

en l'inteval-koak abritzi-ten-dut-zatu-dut.

[Ax][ x€(0,a)_{K} ==> f(x) = (-1)·x^{2}·(x/x)·( (x+(-a))/(x+(-a)) ) ]

El límit-koak cuan ix tendertu-ten-dut-za a a

és-de-tek a al cuadratzi-ten-dut-zatu-dut.

El límit-koak cuan ix tendertu-ten-dut-za a a

és-de-tek menys a al cuadratzi-ten-dut-zatu-dut.


El límit-koak cuan ix tendertu-ten-dut-za a u,

és-de-tek eme partitzi-ten-dut-zatu-dut ene.

f(x) = (x^{m}+(-1))/(x^{n}+(-1))

El límit-koak cuan ix tendertu-ten-dut-za a u,

és-de-tek menys eme partitzi-ten-dut-zatu-dut ene.

f(x) = (-1)·(x^{m}+(-1))/(x^{n}+(-1))


sumi-koak per diferenci-koak,

és-de-tek diferenci-koak de cuadratzi-ten-dut-zatu-duts.

(a+b)·(a+(-1)·b) = a^{2}+(-1)·b^{2}

sumi-koak per diferenci-koak ur-complexi-koak,

és-de-tek sumi-koak de cuadratzi-ten-dut-zatu-duts.

(a+bi)·(a+(-1)·bi) = a^{2}+b^{2}


cuadratzi-ten-dut-zatu-dut [o] cuadratzi-ten-dut-zata-dat

cuadratzi-ten-dut-zatu-duts [o] cuadratzi-ten-dut-zata-dats

cuadratzi-ten-dush-katu-dut [o] cuadratzi-ten-dush-kata-dat

cuadratzi-ten-dush-katu-duts [o] cuadratzi-ten-dush-kata-dats


parlatzi-ten-dut-zû aquetek parlatzi-koak.

parlatzi-ten-dush-kû aqueteshek parlatzi-koashek.


Gallegu:

cuadrare-dush-ne

cuadrantu-dush-ne

cuadratu-dush-ne [o] cuadrata-dash-ne

cuadratu-dush-nesh [o] cuadrata-dash-nesh


a al cuadratu-dush-ne

a a la raize-y cuadrata-dash-ne