B_{0}(x) = x+(-1)(1/2)
B_{1}(x) = (1/2)x^{2}+(-1)(1/2)x+(1/12)
B_{2}(x) = (1/6)x^{3}+(-1)(1/4)x^{2}+(1/12)x
B_{3}(x) = (1/24)x^{4}+(-1)(1/12)x^{3}+(1/24)x^{2}+(-1)(1/720)
B_{4}(x) = (1/120)x^{5}+(-1)(1/48)x^{4}+(1/72)x^{3}+(-1)(1/720)x
B_{5}(x) = (1/720)x^{6}+(-1)(1/240)x^{5}+(1/288)x^{4}+(-1)(1/1440)x^{2}+...
...+(1/30240)
B_{6}(x) = (1/5040)x^{7}+(-1)(1/1440)x^{6}+(1/1440)x^{5}+(-1)(1/4320)x^{3}+...
...+(1/30240)x
B_{7}(x) = (1/40320)x^{8}+(-1)(1/10080)x^{7}+(1/8640)x^{6}+(-1)(1/17280)x^{4}+...
...+(1/60480)x^{2}+(-1)(1/1209600)
B_{8}(x) = (1/362880)x^{9}+(-1)(1/80640)x^{8}+(1/60480)x^{7}+(-1)(1/86400)x^{5}+...
...+(1/181440)x^{3}+(-1)(1/1209600)x
B_{9}(x) = (1/3628800)x^{10}+(-1)(1/725760)x^{9}+(1/483840)x^{8}+(-1)(1/518400)x^{6}+...
...+(1/725760)x^{4}+(-1)(1/2419200)x^{2}+(1/47900160)
B_{10}(x) = (1/39916800)x^{11}+(-1)(1/7257600)x^{10}+(1/4354560)x^{9}+(-1)(1/3628800)x^{7}+...
...+(1/3628800)x^{5}+(-1)(1/7257600)x^{3}+(1/47900160)x+B_{10}(0)
B_{n+1}(1) = B_{n+1}(0)
d_{x}[B_{n+1}(x)] = B_{n}(x)
1^{m}+...+n^{m} = m!( B_{m}(n+1)+(-1)B_{m}(1) )
sábado, 20 de julio de 2019
sumes de potencies
1^{0}+...+n^{0} = n
1^{1}+...+n^{1} = (1/2)n(n+1)
1^{2}+...+n^{2} = (1/6)n(n+1)(2n+1)
1^{3}+...+n^{3} = (1/4)n^{2}(n+1)^{2}
1^{4}+...+n^{4} = (1/30)n(n+1)(2n+1)(3n^{2}+3n+(-1))
1^{5}+...+n^{5} = (1/12)n^{2}(n+1)^{2}(2n^{2}+2n+(-1))
1^{6}+...+n^{6} = (1/42)n(n+1)(2n+1)(3n^{4}+6n^{3}+(-3)n+1)
1^{7}+...+n^{7} = (1/24)n^{2}(n+1)^{2}(3n^{4}+6n^{3}+(-1)n^{2}+(-4)n+2)
1^{8}+...+n^{8} = (1/90)n(n+1)(2n+1)(n^{2}+n+(-1))(5n^{4}+10n^{3}+(-5)n+4)+...
...+(1/90)n(n+1)(2n+1)
1^{9}+...+n^{9} = (1/20)n^{2}(n+1)^{2}(n^{2}+n+(-1))(2n^{4}+4n^{3}+(-n^{2})+(-3)n+3)
he arribat amb polinomis de sumes de potencies fins a n^{9} y metode del binomi para sumes de potencies fins a n^{5}
método del binomi para sumes de potencies:
(n+1)^{n}+(-1)=[ n // 1 ]·∑ ( k^{n+(-1)} )+...+[ n // n+(-1) ]·∑ ( k )+n
teorema:
si (1/oo^{n}) = 0 ==> lim[n-->oo]( (1/n^{m+1})·( 1^{m}+...+n^{m} ) ) = ( 1/(m+1) )
1^{1}+...+n^{1} = (1/2)n(n+1)
1^{2}+...+n^{2} = (1/6)n(n+1)(2n+1)
1^{3}+...+n^{3} = (1/4)n^{2}(n+1)^{2}
1^{4}+...+n^{4} = (1/30)n(n+1)(2n+1)(3n^{2}+3n+(-1))
1^{5}+...+n^{5} = (1/12)n^{2}(n+1)^{2}(2n^{2}+2n+(-1))
1^{6}+...+n^{6} = (1/42)n(n+1)(2n+1)(3n^{4}+6n^{3}+(-3)n+1)
1^{7}+...+n^{7} = (1/24)n^{2}(n+1)^{2}(3n^{4}+6n^{3}+(-1)n^{2}+(-4)n+2)
1^{8}+...+n^{8} = (1/90)n(n+1)(2n+1)(n^{2}+n+(-1))(5n^{4}+10n^{3}+(-5)n+4)+...
...+(1/90)n(n+1)(2n+1)
1^{9}+...+n^{9} = (1/20)n^{2}(n+1)^{2}(n^{2}+n+(-1))(2n^{4}+4n^{3}+(-n^{2})+(-3)n+3)
he arribat amb polinomis de sumes de potencies fins a n^{9} y metode del binomi para sumes de potencies fins a n^{5}
método del binomi para sumes de potencies:
(n+1)^{n}+(-1)=[ n // 1 ]·∑ ( k^{n+(-1)} )+...+[ n // n+(-1) ]·∑ ( k )+n
teorema:
si (1/oo^{n}) = 0 ==> lim[n-->oo]( (1/n^{m+1})·( 1^{m}+...+n^{m} ) ) = ( 1/(m+1) )
serie zeta
∑ (1/n^{2}) = (pi^{2}/6)
∑ (1/n^{2}) = (-1)^{1+1}·pi^{2·1}·2^{2·1+(-1)}·(1/12)
∑ (1/n^{4}) = (pi^{4}/90)
∑ (1/n^{4}) = (-1)^{2+1}·pi^{2·2}·2^{2·2+(-1)}·(-1)(1/720)
∑ (1/n^{6}) = (pi^{6}/945)
∑ (1/n^{6}) = (-1)^{3+1}·pi^{2·3}·2^{2·3+(-1)}·(1/30240)
∑ (1/n^{8}) = (pi^{8}/9450)
∑ (1/n^{8}) = (-1)^{4+1}·pi^{2·4}·2^{2·4+(-1)}·(-1)(1/1209600)
∑ (1/n^{10}) = (pi^{10}/93555)
∑ (1/n^{10}) = (-1)^{5+1}·pi^{2·5}·2^{2·5+(-1)}·(1/47900160)
∑ (1/n^{2s}) = (-1)^{s+1}·pi^{2·s}·2^{2·s+(-1)}·B_{2s+(-1)}(0)
on B_{2s+(-1)}(0) és el número de suma de potencies.
∑ (1/n^{2}) = (-1)^{1+1}·pi^{2·1}·2^{2·1+(-1)}·(1/12)
∑ (1/n^{4}) = (pi^{4}/90)
∑ (1/n^{4}) = (-1)^{2+1}·pi^{2·2}·2^{2·2+(-1)}·(-1)(1/720)
∑ (1/n^{6}) = (pi^{6}/945)
∑ (1/n^{6}) = (-1)^{3+1}·pi^{2·3}·2^{2·3+(-1)}·(1/30240)
∑ (1/n^{8}) = (pi^{8}/9450)
∑ (1/n^{8}) = (-1)^{4+1}·pi^{2·4}·2^{2·4+(-1)}·(-1)(1/1209600)
∑ (1/n^{10}) = (pi^{10}/93555)
∑ (1/n^{10}) = (-1)^{5+1}·pi^{2·5}·2^{2·5+(-1)}·(1/47900160)
∑ (1/n^{2s}) = (-1)^{s+1}·pi^{2·s}·2^{2·s+(-1)}·B_{2s+(-1)}(0)
on B_{2s+(-1)}(0) és el número de suma de potencies.
jueves, 18 de julio de 2019
conjugeited eit
aquí-nisteit <==> aquí <==> aquí-nek <==> aquí.
allí-nisteit <==> allá <==> allí-nek <==> allí.
aishí-nisteit <==> aishí <==> aishí-nek <==> así.
allí-nisteit <==> allá <==> allí-nek <==> allí.
aishí-nisteit <==> aishí <==> aishí-nek <==> así.
miércoles, 17 de julio de 2019
conjugeited eit
present
calcul-eitu <==> calculû <==> calculû-tek <==> calculo <==> calculo
calcul-eites <==> calcules <==> calcules-tek <==> calculas <==> calculai
calcul-eita <==> calcula <==> calcula-tek <==> calcula <==> calcula
calcul-eitems <==> calculem <==> calculemek <==> calculamos <==> calculamoti
calcul-eiteus <==> calculeu <==> calculeuek <==> calculáis <==> calculáiti
calcul-eiten <==> calculen <==> calculen-tek <==> calculan <==> calculan
-ty <==> -tat <==> -tatsuna <==> -dad
-tion <==> -ció <==> -zutna <==> -ción
-eited <==> -at <==> -atu-dut <==> -ado
-eiting <==> -ant <==> -antu-dut <==> -ando
perfect
he calculeited <==> he calculat <==> he calculatu-dut <==> he calculado
has calculeited <==> has calculat <==> has calculatu-dut <==> has calculado
ha calculeited <==> ha calculat <==> ha calculatu-dut <==> ha calculado
hems calculeited <==> hem calculat <==> hem-ek calculatu-dut <==> hemos calculado
heus calculeited <==> heu calculat <==> heu-ek calculatu-dut <==> héis calculado
hant calculeited <==> han calculat <==> han calculatu-dut <==> han calculado
passat
vaitch calculeit
vas calculeit
va calculeit
vems calculeit
veus calculeit
vant calculeit
imperfect
calculeitava
calculeitaves
calculeitava
calculeitavems
calculeitaveus
calculeitavent
conditional
calculeitería
calculeiteríes
calculeitería
calculeiteríems
calculeiteríeus
calculeiteríent
subjuntive
calculeités
calculeitessis
calculeités
calculeitessims
calculeitessius
calculeitessint
calcul-eitu <==> calculû <==> calculû-tek <==> calculo <==> calculo
calcul-eites <==> calcules <==> calcules-tek <==> calculas <==> calculai
calcul-eita <==> calcula <==> calcula-tek <==> calcula <==> calcula
calcul-eitems <==> calculem <==> calculemek <==> calculamos <==> calculamoti
calcul-eiteus <==> calculeu <==> calculeuek <==> calculáis <==> calculáiti
calcul-eiten <==> calculen <==> calculen-tek <==> calculan <==> calculan
-ty <==> -tat <==> -tatsuna <==> -dad
-tion <==> -ció <==> -zutna <==> -ción
-eited <==> -at <==> -atu-dut <==> -ado
-eiting <==> -ant <==> -antu-dut <==> -ando
perfect
he calculeited <==> he calculat <==> he calculatu-dut <==> he calculado
has calculeited <==> has calculat <==> has calculatu-dut <==> has calculado
ha calculeited <==> ha calculat <==> ha calculatu-dut <==> ha calculado
hems calculeited <==> hem calculat <==> hem-ek calculatu-dut <==> hemos calculado
heus calculeited <==> heu calculat <==> heu-ek calculatu-dut <==> héis calculado
hant calculeited <==> han calculat <==> han calculatu-dut <==> han calculado
passat
vaitch calculeit
vas calculeit
va calculeit
vems calculeit
veus calculeit
vant calculeit
imperfect
calculeitava
calculeitaves
calculeitava
calculeitavems
calculeitaveus
calculeitavent
conditional
calculeitería
calculeiteríes
calculeitería
calculeiteríems
calculeiteríeus
calculeiteríent
subjuntive
calculeités
calculeitessis
calculeités
calculeitessims
calculeitessius
calculeitessint
Suscribirse a:
Entradas (Atom)