Mostrando entradas con la etiqueta física-circuits-eléctrics. Mostrar todas las entradas
Mostrando entradas con la etiqueta física-circuits-eléctrics. Mostrar todas las entradas
miércoles, 29 de enero de 2020
circuits eléctrics amb bobines y condensadors II
( ∑ (1/L_{k}) )^{(-1)}·d_{tt}^{2}[q(t)] + ...
... ( ∑ a_{j} )·( ∑ (1/a_{k}) )·( ∑ a_{i} )·q(t) = V(t)
( ∑ L_{k} )·d_{tt}^{2}[q(t)] + ...
... ( ( ∑ (1/a_{j}) )·( ∑ a_{k} )·( ∑ (1/a_{i}) ) )^{(-1)}·q(t) = V(t)
( ∑ L_{j} )·( ∑ (1/L_{k}) )·( ∑ L_{i} )·d_{tt}^{2}[q(t)] + ...
... ( ∑ (1/a_{k}) )^{(-1)}·q(t) = V(t)
( ( ∑ (1/L_{j}) )·( ∑ L_{k} )·( ∑ (1/L_{i}) ) )^{(-1)}·d_{tt}^{2}[q(t)] + ...
... ( ∑ a_{k} )·q(t) = V(t)
circuits eléctrics amb bobines y condensadors
( L_{1}+...+L_{n} )·d_{tt}^{2}[q(t)] + ( a_{1}+...+a_{n} )·q(t) = V(t)
( (1/L_{1})+...+(1/L_{n}) )^{(-1)}·d_{tt}^{2}[q(t)] + ( (1/a_{1})+...+(1/a_{n}) )^{(-1)}·q(t) = V(t)
( ∑ L_{j} )·( ∑ (1/L_{k}) )·( ∑ L_{i} )·d_{tt}^{2}[q(t)] + ...
... ( ∑ a_{j} )·( ∑ (1/a_{k}) )·( ∑ a_{i} )·q(t) = V(t)
( ( ∑ (1/L_{j}) )·( ∑ L_{k} )·( ∑ (1/L_{i}) ) )^{(-1)}·d_{tt}^{2}[q(t)] + ...
... ( ( ∑ (1/a_{j}) )·( ∑ a_{k} )·( ∑ (1/a_{i}) ) )^{(-1)}·q(t) = V(t)
circuits eléctrics amb resistències y condensadors II
( ∑ (1/R_{k}) )^{(-1)}·d_{t}[q(t)] + ...
... ( ∑ a_{j} )·( ∑ (1/a_{k}) )·( ∑ a_{i} )·q(t) = V(t)
( ∑ R_{k} )·d_{t}[q(t)] + ...
... ( ( ∑ (1/a_{j}) )·( ∑ a_{k} )·( ∑ (1/a_{i}) ) )^{(-1)}·q(t) = V(t)
( ∑ R_{j} )·( ∑ (1/R_{k}) )·( ∑ R_{i} )·d_{t}[q(t)] + ...
... ( ∑ (1/a_{k}) )^{(-1)}·q(t) = V(t)
( ( ∑ (1/R_{j}) )·( ∑ R_{k} )·( ∑ (1/R_{i}) ) )^{(-1)}·d_{t}[q(t)] + ...
... ( ∑ a_{k} )·q(t) = V(t)
circuits electrics amb resistències y condensadors
( R_{1}+...+R_{n} )·d_{t}[q(t)] + ( a_{1}+...+a_{n} )·q(t) = V(t)
( (1/R_{1})+...+(1/R_{n}) )^{(-1)}·d_{t}[q(t)] + ( (1/a_{1})+...+(1/a_{n}) )^{(-1)}·q(t) = V(t)
( ∑ R_{j} )·( ∑ (1/R_{k}) )·( ∑ R_{i} )·d_{t}[q(t)] + ...
... ( ∑ a_{j} )·( ∑ (1/a_{k}) )·( ∑ a_{i} )·q(t) = V(t)
( ( ∑ (1/R_{j}) )·( ∑ R_{k} )·( ∑ (1/R_{i}) ) )^{(-1)}·d_{t}[q(t)] + ...
... ( ( ∑ (1/a_{j}) )·( ∑ a_{k} )·( ∑ (1/a_{i}) ) )^{(-1)}·q(t) = V(t)
( (1/R_{1})+...+(1/R_{n}) )^{(-1)}·d_{t}[q(t)] + ( (1/a_{1})+...+(1/a_{n}) )^{(-1)}·q(t) = V(t)
( ∑ R_{j} )·( ∑ (1/R_{k}) )·( ∑ R_{i} )·d_{t}[q(t)] + ...
... ( ∑ a_{j} )·( ∑ (1/a_{k}) )·( ∑ a_{i} )·q(t) = V(t)
( ( ∑ (1/R_{j}) )·( ∑ R_{k} )·( ∑ (1/R_{i}) ) )^{(-1)}·d_{t}[q(t)] + ...
... ( ( ∑ (1/a_{j}) )·( ∑ a_{k} )·( ∑ (1/a_{i}) ) )^{(-1)}·q(t) = V(t)
lunes, 20 de enero de 2020
índex de física
índex de etiquetes de física
viernes, 3 de enero de 2020
circuits eléctrics: condensadors, resistències y bobines
V(t) = ( a_{1}+...+a_{n} )·q(t)
V(t) = ( (1/a_{1})+...+(1/a_{n}) )^{(-1)}·q(t)
V(t) = ( R_{1}+...+R_{n} )·d_{t}[q(t)]
V(t) = ( (1/R_{1})+...+(1/R_{n}) )^{(-1)}·d_{t}[q(t)]
V(t) = ( L_{1}+...+L_{n} )·d_{tt}^{2}[q(t)]
V(t) = ( (1/L_{1})+...+(1/L_{n}) )^{(-1)}·d_{tt}^{2}[q(t)]
V(t) = ( ∑ a_{i} )·( ∑ (1/a_{k}) )·( ∑ a_{j} )·q(t)
V(t) = ( ( ∑ (1/a_{i}) )·( ∑ a_{k} )·( ∑ (1/a_{j}) ) )^{(-1)}·q(t)
V(t) = ( ∑ R_{i} )·( ∑ (1/R_{k}) )·( ∑ R_{j} )·d_{t}[q(t)]
V(t) = ( ( ∑ (1/R_{i}) )·( ∑ R_{k} )·( ∑ (1/R_{j}) ) )^{(-1)}·d_{t}[q(t)]
V(t) = ( ∑ L_{i} )·( ∑ (1/L_{k}) )·( ∑ L_{j} )·d_{tt}^{2}[q(t)]
V(t) = ( ( ∑ (1/L_{i}) )·( ∑ L_{k} )·( ∑ (1/L_{j}) ) )^{(-1)}·d_{tt}^{2}[q(t)]
V(t) = ( (1/a_{1})+...+(1/a_{n}) )^{(-1)}·q(t)
V(t) = ( R_{1}+...+R_{n} )·d_{t}[q(t)]
V(t) = ( (1/R_{1})+...+(1/R_{n}) )^{(-1)}·d_{t}[q(t)]
V(t) = ( L_{1}+...+L_{n} )·d_{tt}^{2}[q(t)]
V(t) = ( (1/L_{1})+...+(1/L_{n}) )^{(-1)}·d_{tt}^{2}[q(t)]
V(t) = ( ∑ a_{i} )·( ∑ (1/a_{k}) )·( ∑ a_{j} )·q(t)
V(t) = ( ( ∑ (1/a_{i}) )·( ∑ a_{k} )·( ∑ (1/a_{j}) ) )^{(-1)}·q(t)
V(t) = ( ∑ R_{i} )·( ∑ (1/R_{k}) )·( ∑ R_{j} )·d_{t}[q(t)]
V(t) = ( ( ∑ (1/R_{i}) )·( ∑ R_{k} )·( ∑ (1/R_{j}) ) )^{(-1)}·d_{t}[q(t)]
V(t) = ( ∑ L_{i} )·( ∑ (1/L_{k}) )·( ∑ L_{j} )·d_{tt}^{2}[q(t)]
V(t) = ( ( ∑ (1/L_{i}) )·( ∑ L_{k} )·( ∑ (1/L_{j}) ) )^{(-1)}·d_{tt}^{2}[q(t)]
circuits eléctrics
en serie:
( V_{1}+...(n)...+V_{n} ) = ( R_{1}+...(n)...+R_{n} )·I_{0}
en paral·lel:
( I_{1}+...(n)...+I_{n} ) = ( (1/R_{1})+...(n)...+(1/R_{n}) )·V_{0}
R_{k} = n
V_{k} = k
I_{k} = k
I_{0} = ( (n+1)/(2n) )
V_{0} = ( (n(n+1))/2 )
R_{k} = 1
V_{k} = k
I_{k} = k
I_{0} = ( (n+1)/2 )
V_{0} = ( (n+1)/2 )
R_{k} = n
V_{k} = 1
I_{k} = 1
I_{0} = ( 1/n )
V_{0} = n
R_{k} = 1
V_{k} = 1
I_{k} = 1
I_{0} = 1
V_{0} = 1
( V_{1}+...(n)...+V_{n} ) = ( R_{1}+...(n)...+R_{n} )·I_{0}
en paral·lel:
( I_{1}+...(n)...+I_{n} ) = ( (1/R_{1})+...(n)...+(1/R_{n}) )·V_{0}
R_{k} = n
V_{k} = k
I_{k} = k
I_{0} = ( (n+1)/(2n) )
V_{0} = ( (n(n+1))/2 )
R_{k} = 1
V_{k} = k
I_{k} = k
I_{0} = ( (n+1)/2 )
V_{0} = ( (n+1)/2 )
R_{k} = n
V_{k} = 1
I_{k} = 1
I_{0} = ( 1/n )
V_{0} = n
R_{k} = 1
V_{k} = 1
I_{k} = 1
I_{0} = 1
V_{0} = 1
Suscribirse a:
Entradas (Atom)