F(x,z) = 16·( p( 2x^{2}+4xz )+(-1)mx^{2}z )
d_{x}[F(x,z)] = p( 4x+4z )+(-1)(2m)xz
d_{z}[F(x,z)] = p( 4z )+(-1)mx^{2}
x = 0
z = 0
p=(m^{2}/16)
d_{x}[F(x,z)] = (m^{2}/4)( x+z )+(-1)(2m)xz
d_{z}[F(x,z)] = (m^{2}/4)( z )+(-1)mx^{2}
x=(m/4)
z=(m/4)
Mostrando entradas con la etiqueta economia. Mostrar todas las entradas
Mostrando entradas con la etiqueta economia. Mostrar todas las entradas
sábado, 1 de febrero de 2020
domingo, 19 de enero de 2020
índex de etiquetes
index de etiquetes.
Etiquetas:
biótica,
dual-sport,
economia,
evangelio-stronikiano,
lley,
lógica-binària,
medicina-teorôctetxtekiana,
morfosintaxis-lógica,
música,
química,
teoría-de-jocs,
titulacions-y-testimoni-de-universitat
viernes, 17 de enero de 2020
economia: modelo de línea de la ecuación de primer orden de logaritmo no inverso
f(x) = e^{(m/x)}
ln( f(x) ) = (m/x)
d_{z}[h(z)] + (-1)·( x^{2}/m )·h(z) = 0
h(z) = e^{(x^{2}/m)·z}
( ln(e^{(x^{2}/m)·(m/x)}) ) = x
( ln(e^{(x^{2}/m)·ln( f(x) )}) ) = x
( ln( h( ln(f(x)) ) ) ) = x
m = 3 & x = (3/4)·m ==> ln(f(3/4)) = 4€
d_{z}[h(z)] + (-1)·(3/16)·h(z) = 0
ln(h(4) ) = (3/4)€
ln(f(3/4))·ln(h(4) ) = 3€
m = 5 & x = (1/10)·m ==> ln(f(1/10)) = 50€
d_{z}[h(z)] + (-1)·(1/500)·h(z) = 0
ln(h(50) ) = (1/10)€
ln(f(1/10))·ln(h(50) ) = 5€
jueves, 16 de enero de 2020
economia: modelo de superficie de la ecuación diferencial de primer orden
f(x) = e^{(m/x^{2})}
ln( f(x) ) = (m/x^{2})
d_{y}[g(y)] + (-1)·( m/x^{3} )·g(y) = 0
g(y) = e^{(m/x^{3})·y}
(1/ln(e^{(m/x^{3})·(x^{2}/m)})) = x
(1/ln(e^{(m/x^{3})·( 1/ln( f(x) ) )})) = x
( 1/ln( g( 1/ln(f(x)) ) ) ) = x
m = 2 cajas & x = 20 cm ==> ( 1/ln( f(20) ) ) = 200€
d_{y}[g(y)] + (-1)·(1/4000)·g(y) = 0
( 1/ln( g(200) ) ) = 20€
m = 3 cajas & x = 60 cm ==> ( 1/ln( f(60) ) ) = 1200€
d_{y}[g(y)] + (-1)·(1/72000)·g(y) = 0
( 1/ln( g(1200) ) ) = 60€
ln( f(x) ) = (m/x^{2})
d_{y}[g(y)] + (-1)·( m/x^{3} )·g(y) = 0
g(y) = e^{(m/x^{3})·y}
(1/ln(e^{(m/x^{3})·(x^{2}/m)})) = x
(1/ln(e^{(m/x^{3})·( 1/ln( f(x) ) )})) = x
( 1/ln( g( 1/ln(f(x)) ) ) ) = x
m = 2 cajas & x = 20 cm ==> ( 1/ln( f(20) ) ) = 200€
d_{y}[g(y)] + (-1)·(1/4000)·g(y) = 0
( 1/ln( g(200) ) ) = 20€
m = 3 cajas & x = 60 cm ==> ( 1/ln( f(60) ) ) = 1200€
d_{y}[g(y)] + (-1)·(1/72000)·g(y) = 0
( 1/ln( g(1200) ) ) = 60€
economia: modelo de línea de la ecuación lineal de primer orden
f(x) = e^{(m/x)}
ln( f(x) ) = (m/x)
d_{y}[g(y)] + (-1)·( m/x^{2} )·g(y) = 0
g(y) = e^{(m/x^{2})·y}
(1/ln(e^{(m/x^{2})·(x/m)})) = x
(1/ln(e^{(m/x^{2})·( 1/ln( f(x) ) )})) = x
( 1/ln( g( 1/ln(f(x)) ) ) ) = x
m = 4 botellas & x = 64 cm ==> ( 1/ln( f(64) ) ) = 16€
d_{y}[g(y)] + (-1)·(1/1024)·g(y) = 0
( 1/ln( g(16) ) ) = 64€
m = 3 botellas & x = 30 cm ==> ( 1/ln( f(30) ) ) = 10€
d_{y}[g(y)] + (-1)·(1/300)·g(y) = 0
( 1/ln( g(10) ) ) = 30€
ln( f(x) ) = (m/x)
d_{y}[g(y)] + (-1)·( m/x^{2} )·g(y) = 0
g(y) = e^{(m/x^{2})·y}
(1/ln(e^{(m/x^{2})·(x/m)})) = x
(1/ln(e^{(m/x^{2})·( 1/ln( f(x) ) )})) = x
( 1/ln( g( 1/ln(f(x)) ) ) ) = x
m = 4 botellas & x = 64 cm ==> ( 1/ln( f(64) ) ) = 16€
d_{y}[g(y)] + (-1)·(1/1024)·g(y) = 0
( 1/ln( g(16) ) ) = 64€
m = 3 botellas & x = 30 cm ==> ( 1/ln( f(30) ) ) = 10€
d_{y}[g(y)] + (-1)·(1/300)·g(y) = 0
( 1/ln( g(10) ) ) = 30€
martes, 14 de enero de 2020
micro-economia optimizatció de una esfera
B(r) = (1/10pi)·(4pi)·( p·r^{2}+(-1)·m·(1/3)·r^{3} )
d_{x}[B(r)] = 2p·r+(-1)·m·r^{2}
mr = 2p
r = ( (2p)/m )
B( (2p)/m ) = (4pi)( (2/3)(p^{3}/m^{2}) )
pelota de tenis:
p=3 & m=2
B(3) = (1/10pi)·(18pi) = 1.8€
B(r) = (1/10pi)·( F(r)+(-1)·V(r) )
(1/10pi)·F(3) = 2.7€
(1/10pi)·V(3) = 0.9€
d_{x}[B(r)] = 2p·r+(-1)·m·r^{2}
mr = 2p
r = ( (2p)/m )
B( (2p)/m ) = (4pi)( (2/3)(p^{3}/m^{2}) )
pelota de tenis:
p=3 & m=2
B(3) = (1/10pi)·(18pi) = 1.8€
B(r) = (1/10pi)·( F(r)+(-1)·V(r) )
(1/10pi)·F(3) = 2.7€
(1/10pi)·V(3) = 0.9€
micro-economia optimització de una caisha
B(x,y,z) = (1/4000)·( 2·p·( xy+yz+zx )+(-1)·m·xyz )
d_{x}[B(x,y,z)] = 2·p·( y+z )+(-1)·m·yz
d_{y}[B(x,y,z)] = 2·p·( z+x )+(-1)·m·zx
d_{z}[B(x,y,z)] = 2·p·( x+y )+(-1)·m·xy
2·p·( y+z )=m·yz
2·p·( z+x )=m·zx
2·p·( x+y )=m·xy
( y+z )=m
( z+x )=m
( x+y )=m
2·p=yz
2·p=zx
2·p=xy
x=(m/2)
y=(m/2)
z=(m/2)
p=(1/2)·(m/2)^{2}
B( (m/2) , (m/2) , (m/2) ) = 3·(m/2)^{4}+(-1)·2·(m/2)^{4}
B( (m/2) , (m/2) , (m/2) ) = (m/2)^{4}
bombones
m=40 <==> ( x=20 & y=20 & z=20 )
B( 20 , 20 , 20 ) = 4€
B( x , y , z ) = (1/4000)·( F( x , y , z ) +(-1)·V( x , y , z ) )
(1/4000)·F( 20 , 20 , 20 ) = 12€
(1/4000)·V( 20 , 20 , 20 ) = 8€
d_{x}[B(x,y,z)] = 2·p·( y+z )+(-1)·m·yz
d_{y}[B(x,y,z)] = 2·p·( z+x )+(-1)·m·zx
d_{z}[B(x,y,z)] = 2·p·( x+y )+(-1)·m·xy
2·p·( y+z )=m·yz
2·p·( z+x )=m·zx
2·p·( x+y )=m·xy
( y+z )=m
( z+x )=m
( x+y )=m
2·p=yz
2·p=zx
2·p=xy
x=(m/2)
y=(m/2)
z=(m/2)
p=(1/2)·(m/2)^{2}
B( (m/2) , (m/2) , (m/2) ) = 3·(m/2)^{4}+(-1)·2·(m/2)^{4}
B( (m/2) , (m/2) , (m/2) ) = (m/2)^{4}
bombones
m=40 <==> ( x=20 & y=20 & z=20 )
B( 20 , 20 , 20 ) = 4€
B( x , y , z ) = (1/4000)·( F( x , y , z ) +(-1)·V( x , y , z ) )
(1/4000)·F( 20 , 20 , 20 ) = 12€
(1/4000)·V( 20 , 20 , 20 ) = 8€
micro-economia optimizar un rollo de papel
B(r,z) = (1/10pi)·( p·(2pi)·r·z+(-1)·m·(pi)·r^{2}·z )
d_{r}[B(r,z)] = p·(2pi)·z+(-1)·m·(2pi)·r·z
p = m·r
r = (p/m)
B( (p/m) , z ) = (1/10)·( p·(2pi)·(p/m)·z+(-1)·m·(pi)·(p/m)^{2}·z )
B( (p/m) , z ) = (1/10)·( (p^{2}/m)·(pi)·z )
papel higiénico:
z=10 & p=(5céntimos/(cm)^{2}) & m=(1céntimo/(cm)^{3})
B( 5 , 10 ) = 25·céntimos = 0.25€
B(r,z) = (1/10pi)·( F(r,z)+(-1)·V(r,z) )
(1/10pi)·F( 5 , 10 ) = 50·céntimos = 0.50€
(1/10pi)·V( 5 , 10 ) = 25·céntimos = 0.25€
papel de aluminio:
z=30 & p=(6céntimos/(cm)^{2}) & m=(2céntimo/(cm)^{3})
B( 3 , 30 ) = 54·céntimos = 0.54€
B(r,z) = (1/10pi)·( F(r,z)+(-1)·V(r,z) )
(1/10pi)·F( 3 , 30 ) = 108·céntimos = 1.08€
(1/10pi)·V( 3 , 30 ) = 54·céntimos = 0.54€
d_{r}[B(r,z)] = p·(2pi)·z+(-1)·m·(2pi)·r·z
p = m·r
r = (p/m)
B( (p/m) , z ) = (1/10)·( p·(2pi)·(p/m)·z+(-1)·m·(pi)·(p/m)^{2}·z )
B( (p/m) , z ) = (1/10)·( (p^{2}/m)·(pi)·z )
papel higiénico:
z=10 & p=(5céntimos/(cm)^{2}) & m=(1céntimo/(cm)^{3})
B( 5 , 10 ) = 25·céntimos = 0.25€
B(r,z) = (1/10pi)·( F(r,z)+(-1)·V(r,z) )
(1/10pi)·F( 5 , 10 ) = 50·céntimos = 0.50€
(1/10pi)·V( 5 , 10 ) = 25·céntimos = 0.25€
papel de aluminio:
z=30 & p=(6céntimos/(cm)^{2}) & m=(2céntimo/(cm)^{3})
B( 3 , 30 ) = 54·céntimos = 0.54€
B(r,z) = (1/10pi)·( F(r,z)+(-1)·V(r,z) )
(1/10pi)·F( 3 , 30 ) = 108·céntimos = 1.08€
(1/10pi)·V( 3 , 30 ) = 54·céntimos = 0.54€
economia: simetria-dual de consumo segun un capital producto lineal en no uno
F(x,y) = (n·x)·(m·y)+(-1)·h( px+qy+(-k) ) & px+qy=k
d_{x}[F(x,y)] = n(my)+(-1)·hp
d_{y}[F(x,y)] = m(nx)+(-1)·hq
nmy=hp
mnx=hq
nmyx=hpx
mnxy=hqy
nmyx+mnxy=hk
2·mnxy=hk
( x=( e^{n}/n ) & y=( e^{m}/m ) ) <==> 2·e^{n}e^{m}=hk
si h=2·( e^{k}/k ) ==>
e^{n}e^{m}=e^{k}
( n=( k+(-j) ) & m=j )
G( (e^{n}/n ) , (e^{m}/m ) ) = e^{n}·e^{m}
economia: simetria-dual de consumo segun un capital producto lineal
F(x,y) = (e^{n}·x)·(e^{m}·y)+(-1)·h( px+qy+(-k) ) & px+qy=k
d_{x}[F(x,y)] = e^{n}(e^{m}y)+(-1)·hp
d_{y}[F(x,y)] = e^{m}(e^{n}x)+(-1)·hq
e^{n}e^{m}y=hp
e^{m}e^{n}x=hq
e^{n}e^{m}yx=hpx
e^{m}e^{n}xy=hqy
e^{n}e^{m}yx+e^{m}e^{n}xy=hk
2·e^{n}e^{m}xy=hk
( x=1 & y=1 ) <==> 2·e^{n}e^{m}=hk
si h=2·( e^{k}/k ) ==>
e^{n}e^{m}=e^{k}
( n=( k+(-j) ) & m=j )
G( 1 , 1 ) = e^{n}·e^{m}
lunes, 13 de enero de 2020
economia: simetria-dual de consumo segun un capital producto potencial
F(x,y) = x^{n}·y^{m}+(-1)·h( px+qy+(-k) ) & px+qy=k
d_{x}[F(x,y)] = nx^{(n+(-1))}·y^{m}+(-1)·hp
d_{y}[F(x,y)] = my^{(m+(-1))}·x^{n}+(-1)·hq
nx^{(n+(-1))}·y^{m}=hp
my^{(m+(-1))}·x^{n}=hq
nx^{n}·y^{m}=hpx
my^{m}·x^{n}=hqy
n·x^{n}·y^{m}+m·x^{n}·y^{m}=hk
(n+m)·x^{n}·y^{m}=hk
( x=1 & y=1 ) <==> n+m=hk
si h=1 ==>
( n=( k+(-j) ) & m=j )
G( 1 , 1 ) = 1
economia: simetria-dual de consumo segun un capital exponencial
F(x,y) = e^{nx}+e^{my}+(-1)·h( px+qy+(-k) ) & px+qy=k
d_{x}[F(x,y)] = ne^{nx}+(-1)·hp
d_{y}[F(x,y)] = me^{my}+(-1)·hq
ne^{nx}=hp
me^{my}=hq
nxe^{nx}=hpx
mye^{my}=hqy
nxe^{nx}+mye^{my}=hk
x=( (k+(-j))/n )
y=( j/m )
(k+(-j))e^{k+(-j)}+je^{j}=hk
si h=( (k+(-j))e^{k+(-j)}+je^{j})/k ) ==>
( x=1 & y=1 ) <==> ( n=( k+(-j) ) & m=j )
G( 1 , 1 ) = e^{n}+e^{m}
economia: simetria-dual de consumo segun un capital logarítmica
F(x,y) = n·ln(x)+m·ln(y)+(-1)·h( px+qy+(-k) ) & px+qy=k
d_{x}[F(x,y)] = n·(1/x)+(-1)·hp
d_{y}[F(x,y)] = m·(1/y)+(-1)·hq
n·(1/x)=hp
m·(1/y)=hq
n=hpx
m=hqy
n+m=hk
si h=1 ==>
n=k+(-j)
m=j
G( n/p , m/q ) = n·ln(n/p)+m·ln(m/q)
d_{x}[F(x,y)] = n·(1/x)+(-1)·hp
d_{y}[F(x,y)] = m·(1/y)+(-1)·hq
n·(1/x)=hp
m·(1/y)=hq
n=hpx
m=hqy
n+m=hk
si h=1 ==>
n=k+(-j)
m=j
G( n/p , m/q ) = n·ln(n/p)+m·ln(m/q)
economia simetria-dual de consumo segun un capital lineal
F(x,y) = nx+my+(-1)·h( px+qy+(-k) ) & px+qy = k
d_{x}[F(x)] = n+(-1)hp
d_{y}[F(x)] = m+(-1)hq
n=hp
m=hq
nx=hpx
my=hqy
nx+my=hk
si h=1 ==>
x=( (k+(-j))/n )
y=( j/m )
( x=1 & y=1 ) <==> ( n = ( k+(-j) ) & m = j )
G( 1 , 1 ) = n+m
d_{x}[F(x)] = n+(-1)hp
d_{y}[F(x)] = m+(-1)hq
n=hp
m=hq
nx=hpx
my=hqy
nx+my=hk
si h=1 ==>
x=( (k+(-j))/n )
y=( j/m )
( x=1 & y=1 ) <==> ( n = ( k+(-j) ) & m = j )
G( 1 , 1 ) = n+m
economia simetria-dual de consumo segun un capital potencial
F(x,y) = x^{n}+y^{m}+(-1)·h( px+qy+(-k) ) & px+qy = k
d_{x}[F(x,y)] = nx^{n+(-1)}+(-1)·hp
d_{y}[F(x,y)] = my^{m+(-1)}+(-1)·hq
nx^{n+(-1)}=hp
my^{m+(-1)}=hq
nx^{n}=hpx
my^{m}=hqy
nx^{n}+my^{m}=hk
x=( ((k+(-j))h)/n )^{(1/n)}
y=( (jh)/m )^{(1/m)}
Si h=1 ==>
x=( (k+(-j))/n )^{(1/n)}
y=( j/m )^{(1/m)}
( x=1 & y=1 ) <==> ( n=( k+(-j) ) & m=j )
G( 1 , 1 ) = 2
d_{x}[F(x,y)] = nx^{n+(-1)}+(-1)·hp
d_{y}[F(x,y)] = my^{m+(-1)}+(-1)·hq
nx^{n+(-1)}=hp
my^{m+(-1)}=hq
nx^{n}=hpx
my^{m}=hqy
nx^{n}+my^{m}=hk
x=( ((k+(-j))h)/n )^{(1/n)}
y=( (jh)/m )^{(1/m)}
Si h=1 ==>
x=( (k+(-j))/n )^{(1/n)}
y=( j/m )^{(1/m)}
( x=1 & y=1 ) <==> ( n=( k+(-j) ) & m=j )
G( 1 , 1 ) = 2
micro-economia supermercado
un supermercado tiene unos costes en camión de alimentos de mx^{3},
optimizar el precio de los alimentos n si los compra a precio p:
B(x) = (n+(-p))·x+(-1)·mx^{3}
d_{x}[B(x)] = (n+(-p))+(-1)·(3mx^{2})
d_{x}[B(x)] = 0 <==> x = ( (n+(-p))/3m )^{(1/2)}
x=1<==> 3m=(n+(-p))
( m=10€ de gasolina & 200€ la planta & n=230€ la planta )
( m=15€ de gasolina & 200€ la planta & n=245€ la planta )
( m=20€ de gasolina & 200€ la planta & n=260€ la planta )
B(1) = (n+(-p))+(-1)·m
B(1) = 2·m
micro-economia de coste cuadrático
una plantación tiene unos costes en agua de qx^{2},
optimizar el precio de la planta:
B(x) = px+(-1)·qx^{2}
d_{x}[B(x)] = p+(-1)·(2qx)
d_{x}[B(x)] = 0 <==> x = ( p/2q )
x=1<==> 2q=p
( m=100€ de agua & p=200€ la planta )
( m=150€ de agua & p=300€ la planta )
( m=200€ de agua & p=400€ la planta )
B(1) = p+(-1)·q
B(1) = q
micro-economia de coste cúbico
una empresa de gas tiene unos costes en camión de bombonas de mx^{3},
optimizar el precio de la bombona de gas:
B(x) = px+(-1)·mx^{3}
d_{x}[B(x)] = p+(-1)·(3mx^{2})
d_{x}[B(x)] = 0 <==> x = ( p/3m )^{(1/2)}
x=1<==> 3m=p
( m=10€ de gasolina & p=30€ la bombona de gas )
( m=15€ de gasolina & p=45€ la bombona de gas )
( m=20€ de gasolina & p=60€ la bombona de gas )
B(1) = p+(-1)·m
B(1) = 2·m
micro-economia
f(x) = px <==> preu per unitat.
g(x) = qx^{2} <==> preu per superficie.
h(x) = mx^{3} <==> preu per volum.
d_{x}[f(x)] = p
d_{x}[g(x)] = 2qx
d_{x}[h(x)] = 3mx^{2}
g(x) = qx^{2} <==> preu per superficie.
h(x) = mx^{3} <==> preu per volum.
d_{x}[f(x)] = p
d_{x}[g(x)] = 2qx
d_{x}[h(x)] = 3mx^{2}
Suscribirse a:
Entradas (Atom)