jueves, 23 de enero de 2020

ecuació exponencial II

e^{x}+e^{y}+e^{z} = e^{x}+e^{[y+(-z)]+z}


e^{x}+e^{y}+e^{z} = e^{[x+(-1)( [y+(-z)]+z ) ]+[y+(-z)]+z}


e^{x}+e^{y}+1 = e^{[x+(-1)[y] ]+[y]}


e^{x}+1+e^{z} = e^{[x+(-1)( [(-z)]+z ) ]+[(-z)]+z}
e^{x}+( (1/e^{z})+1 )·e^{z} = e^{[x+(-1)( [(-z)]+z ) ]+[(-z)]+z}


1+e^{y}+e^{z} = e^{[(-1)( [y+(-z)]+z ) ]+[y+(-z)]+z}
1+e^{[y+(-z)]+z} = e^{[(-1)( [y+(-z)]+z ) ]+[y+(-z)]+z}


[(-1)[0]] = ln(3/2)


e^{[(-1)[0]]}=(1/e^{[0]})+1 = (1/2)+1 = (3/2)

No hay comentarios:

Publicar un comentario