sup[ 0 [< x=y [< 1 ]( ∬ d[x]d[y] ) = 1 & x=1 & y=1
sup[ 0 [< x=y [< 1 ]( ∬ [xy] d[x]d[y] ) = (1/4) & x=1 & y=1
med[ 0 [< x=y [< 1 ]( ∬ d[x]d[y] ) = (1/2) & x=(1/2^{(1/2)}) & y=(1/2^{(1/2)})
med[ 0 [< x=y [< 1 ]( ∬ [xy] d[x]d[y] ) = (1/8) & x=(1/2^{(1/4)}) & y=(1/2^{(1/4)})
sup[ 0 [< x=y [< 1 ]( ∫ [ (1+(-x)) ] d[y] ) = (1/4) & x=(1/2) & y=(1/2)
med[ 0 [< x=y [< 1 ]( ∫ [ (1+(-x)) ] d[y] ) = (1/8) & x=(1/2)( 1+(1/2)^{(1/2)} ) & y=(1/2)( 1+(1/2)^{(1/2)} )
x^{2}+(-x)+(1/8)=0
sábado, 15 de febrero de 2020
especies combinatóries: parts dos
[ m·( {a_{i_{k}},a_{j_{k}}} ) ]
∑ ( ( m·[ k // 2 ] )·x^{k} )
[ m·( {a_{i_{k}},a_{j_{k}}} ) ] + [ n·( {a_{i_{k}},a_{j_{k}}} ) ] = ...
... [ (m+n)·( {a_{i_{k}},a_{j_{k}}} ) ]
∑ ( ( (m+n)·[ k // 2 ] )·x^{k} )
[ m·( {a_{i_{k}},a_{j_{k}}} ) ] [x] [ n·( {a_{i_{k}},a_{j_{k}}} ) ] = ...
... [ (m·n)·( {a_{i_{k}},a_{j_{k}}} [x] {a_{i_{k}},a_{j_{k}}} ) ]
∑ ( ( (m·n)·[ k // 2 ]^{2} )·x^{k} )
∑ ( ( m·[ k // 2 ] )·x^{k} )
[ m·( {a_{i_{k}},a_{j_{k}}} ) ] + [ n·( {a_{i_{k}},a_{j_{k}}} ) ] = ...
... [ (m+n)·( {a_{i_{k}},a_{j_{k}}} ) ]
∑ ( ( (m+n)·[ k // 2 ] )·x^{k} )
[ m·( {a_{i_{k}},a_{j_{k}}} ) ] [x] [ n·( {a_{i_{k}},a_{j_{k}}} ) ] = ...
... [ (m·n)·( {a_{i_{k}},a_{j_{k}}} [x] {a_{i_{k}},a_{j_{k}}} ) ]
∑ ( ( (m·n)·[ k // 2 ]^{2} )·x^{k} )
especies combinatóries
[ n·( {a_{k},a_{1},a_{2}},...,{a_{k+(-1)},a_{k},a_{1}} ) ]
∑ ( ( n·k )·x^{k} )
[ m·( {a_{k},a_{1},a_{2}},...,{a_{k+(-1)},a_{k},a_{1}} ) ]+...
... [ n·( {a_{k},a_{1},a_{2}},...,{a_{k+(-1)},a_{k},a_{1}} ) ] = ...
... [ (m+n)·( {a_{k},a_{1},a_{2}},...,{a_{k+(-1)},a_{k},a_{1}} ) ]
∑ ( ( (m+n)·k )·x^{k} )
f: [n·( {a_{1}},...,{a_{k}} )] ---> [ n·( {a_{k},a_{1},a_{2}},...,{a_{k+(-1)},a_{k},a_{1}} ) ] és bijectiva.
f({a_{j}}) = {a_{j+(-1)},a_{j},a_{j+1}} = {a_{i+(-1),a_{i},a_{i+1}}} = f({a_{i}})
j+(-1) = i+(-1) & j+1 = i+1
j=i
especies combinatóries
[ n·( {a_{k},a_{2}},...,{a_{k+(-1)},a_{1}} ) ]
∑ ( ( n·k )·x^{k} )
[ m·( {a_{k},a_{2}},...,{a_{k+(-1)},a_{1}} ) ]+[ n·( {a_{k},a_{2}},...,{a_{k+(-1)},a_{1}} ) ] = ...
... [ (m+n)·( {a_{k},a_{2}},...,{a_{k+(-1)},a_{1}} ) ]
∑ ( ( (m+n)·k )·x^{k} )
f: [n·( {a_{1}},...,{a_{k}} )] ---> [ n·( {a_{k},a_{2}},...,{a_{k+(-1)},a_{1}} ) ] és bijectiva.
f({a_{j}}) = {a_{j+(-1)},a_{j+1}} = {a_{i+(-1),a_{i+1}}} = f({a_{i}})
j+(-1) = i+(-1) & j+1 = i+1
j=i
especies combinatóries: el octopus
[ A_{1},...,A_{j} ]-[ m·( {a_{1}},...,{a_{k}} ) ]
∑ (m·k+j)·x^{k}
[ A_{1},...,A_{j} ]-[ m·( {a_{1}},...,{a_{k}} ) ] + [ B_{1},...,B_{s} ]-[ n·( {a_{1}},...,{a_{k}} ) ] = ...
... [ A_{1},...,A_{j},B_{1},...,B_{s} ]-[ (m+n)·( {a_{1}},...,{a_{k}} ) ]
∑ ( (m+n)·k+(j+s) )·x^{k}
[ A_{1},...,A_{j} ]-[ m·( {a_{1}},...,{a_{k}} ) ] [x] [ B_{1},...,B_{s} ]-[ n·( {a_{1}},...,{a_{k}} ) ] = ...
... [ A_{j} [x] B_{s} ]-[ (ms+nj)·( {a_{1}},...,{a_{k}} ) ]-[ (m·n)·( {a_{k}} [x] {a_{k}} ) ]
∑ ( (m·n)·k^{2}+(ms+nj)·k+(j·s) )·x^{k}
∑ (m·k+j)·x^{k}
[ A_{1},...,A_{j} ]-[ m·( {a_{1}},...,{a_{k}} ) ] + [ B_{1},...,B_{s} ]-[ n·( {a_{1}},...,{a_{k}} ) ] = ...
... [ A_{1},...,A_{j},B_{1},...,B_{s} ]-[ (m+n)·( {a_{1}},...,{a_{k}} ) ]
∑ ( (m+n)·k+(j+s) )·x^{k}
[ A_{1},...,A_{j} ]-[ m·( {a_{1}},...,{a_{k}} ) ] [x] [ B_{1},...,B_{s} ]-[ n·( {a_{1}},...,{a_{k}} ) ] = ...
... [ A_{j} [x] B_{s} ]-[ (ms+nj)·( {a_{1}},...,{a_{k}} ) ]-[ (m·n)·( {a_{k}} [x] {a_{k}} ) ]
∑ ( (m·n)·k^{2}+(ms+nj)·k+(j·s) )·x^{k}
especies combinatóries
[ n·( {a_{1}},...,{a_{k}} ) ]
∑ ( ( n·k )·x^{k} )
[ m·( {a_{1}},...,{a_{k}} ) ] + [ n·( {a_{1}},...,{a_{k}} ) ] = [ (m+n)·( {a_{1}},...,{a_{k}} ) ]
∑ ( ( (m+n)·k )·x^{k} )
[ m·( {a_{1}},...,{a_{k}} ) ] [x] [ n·( {a_{1}},...,{a_{k}} ) ] = ...
... [ (m·n)·( {a_{k}} [x] {a_{k}} ) ]
∑ ( ( (m·n)·k^{2} )·x^{k} )
∑ ( ( n·k )·x^{k} )
[ m·( {a_{1}},...,{a_{k}} ) ] + [ n·( {a_{1}},...,{a_{k}} ) ] = [ (m+n)·( {a_{1}},...,{a_{k}} ) ]
∑ ( ( (m+n)·k )·x^{k} )
[ m·( {a_{1}},...,{a_{k}} ) ] [x] [ n·( {a_{1}},...,{a_{k}} ) ] = ...
... [ (m·n)·( {a_{k}} [x] {a_{k}} ) ]
∑ ( ( (m·n)·k^{2} )·x^{k} )
jueves, 13 de febrero de 2020
química colesterol nitruro
colesterol nitruro:
H_{2}(OH)_{3}-Hex[ -N- | -C=C-N-C=C- ]-O-Hex[ -N- | -C=C-N-C=C- ]-H_{2}(OH)_{3}
4 para-destructores + 2 para-constructores = 2 para-destructores
gras-insulina nitrura:
H_{2}(OH)_{3}-Hex[ -N- | -C=C=C-N-C=C=C- ]-O-Hex[ -N- | -C=C=C-N-C=C=C- ]-H_{2}(OH)_{3}
4 para-destructores + 6 para-constructores = 2 para-constructores
química azúcar nitruro
azúcar nitruro:
H_{2}(OH)_{4}-Hex[ -C- | -C=C-N-C=C- ]-O-Hex[ -C- | -C=C-N-C=C- ]-H_{2}(OH)_{4}
4 para-destructores + 2 para-constructores = 2 para-destructores
insulina nitrura:
H_{2}(OH)_{4}-Hex[ -C- | -C=C=C-N-C=C=C- ]-O-Hex[ -C- | -C=C=C-N-C=C=C- ]-H_{2}(OH)_{4}
4 para-destructores + 6 para-constructores = 2 para-constructores
química: colesterol-fosfuro
colesterol fosfuro:
(OH)-Hex[ =P= | =C=C=P=C=C= ]-Hex[ =P= | =C=C=P=C=C= ]-(OH)
8 para-destructores + 4 para-constructores = 4 para-destructores
gras-insulina fosfura:
(OH)-Hex[ =P= | =C=C=C=P=C=C=C= ]-Hex[ =P= | =C=C=C=P=C=C=C= ]-(OH)
8 para-destructores + 12 para-constructores = 4 para-constructores
miércoles, 12 de febrero de 2020
química: azúcar fosfuro
azúcar fosfuro:
Hex[ =C= | =C=C=P=C=C= ]-Hex[ =C= | =C=C=P=C=C= ]
8 para-destructores + 4 para-constructores = 4 para-destructores
insulina fosfura:
Hex[ =C= | =C=C=C=P=C=C=C= ]-Hex[ =C= | =C=C=C=P=C=C=C= ]
8 para-destructores + 12 para-constructores = 4 para-constructores
química colesterol y gras-insulina
colesterol:
(OH)_{2}-Hex[ -O- | -C=C-O-C=C- ]-O_{6}-Hex[ -O- | -C=C-O-C=C- ]-(OH)_{2}
4 para-destructores + 2 para-constructores = 2 para-destructores
gras-insulina:
(OH)_{2}-Hex[ -O- | -C=C=C-O-C=C=C- ]-O_{6}-Hex[ -O- | -C=C=C-O-C=C=C- ]-(OH)_{2}
4 para-destructores + 6 para-constructores = 2 para-constructores
química azúcar y insulina
azúcar:
(OH)_{4}-Hex[ -C- | -C=C-O-C=C- ]-O_{6}-Hex[ -C- | -C=C-O-C=C- ]-(OH)_{4}
4 para-destructores + 2 para-constructores = 2 para-destructores
insulina:
(OH)_{4}-Hex[ -C- | -C=C=C-O-C=C=C- ]-O_{6}-Hex[ -C- | -C=C=C-O-C=C=C- ]-(OH)_{4}
4 para-destructores + 6 para-constructores = 2 para-constructores
(OH)_{4}-Hex[ -C- | -C=C-O-C=C- ]-O_{6}-Hex[ -C- | -C=C-O-C=C- ]-(OH)_{4}
4 para-destructores + 2 para-constructores = 2 para-destructores
insulina:
(OH)_{4}-Hex[ -C- | -C=C=C-O-C=C=C- ]-O_{6}-Hex[ -C- | -C=C=C-O-C=C=C- ]-(OH)_{4}
4 para-destructores + 6 para-constructores = 2 para-constructores
dual-románico
románico-italiano
je vare cantare
tú vare cantare
il vare cantare
ella vare cantare
románico-portuguesh
je varesh cantaresh
tú varesh cantaresh
il varesh cantaresh
ella varesh cantaresh
románico-françé
je vare-dom cantare-dom
tú vare-dom cantare-dom
il vare-dom cantare-dom
ella vare-dom cantare-dom
dual-románico
románico-italiano
je havere cantato
tú havere cantato
il havere cantato
ella havere cantato
románico-portuguesh
je haveresh cantadu
tú haveresh cantadu
il haveresh cantadu
ella haveresh cantadu
románico-françé
je havere-dom cantatu-dom
tú havere-dom cantatu-dom
il havere-dom cantatu-dom
ella havere-dom cantatu-dom
martes, 11 de febrero de 2020
dual-románico
románico-italiano
je cantare
tú cantare
il cantare
ella cantare
románico-portuguesh
je cantaresh
tú cantaresh
il cantaresh
ella cantaresh
románico-françé
je cantare-dom
tú cantare-dom
il cantare-dom
ella cantare-dom
je cantare
tú cantare
il cantare
ella cantare
románico-portuguesh
je cantaresh
tú cantaresh
il cantaresh
ella cantaresh
románico-françé
je cantare-dom
tú cantare-dom
il cantare-dom
ella cantare-dom
domingo, 9 de febrero de 2020
Suscribirse a:
Entradas (Atom)