sábado, 18 de septiembre de 2021

stowed & stehed

beber:

drink <==> trink

drinkems <==> trinkems

drinkez <==> trinkez

drinken <==> trinken

drogar:

druck <==> truck

druckems <==> truckems

druckez <==> truckez

drucken <==> trucken


drash <==> trash

drashems <==> trashems

drashez <==> trashez

drashen <==> trashen


sdratch <==> stratch

sdratchems <==> stratchems

sdratchez <==> stratchez

sdratchen <==> stratchen


morir:

mordrate <==> mortrate

mordrems <==> mortrems

mordrez <==> mortrez

mordren <==> mortren

moler:

moldrate <==> moltrate

moldrems <==> moltrems

moldrez <==> moltrez

moldren <==> moltren


sdirt <==> stirt

sdirtems <==> stirtems

sdirtez <==> stirtez

sdirten <==> stirten


sdilt <==> stilt

sdiltems <==> stiltems

sdiltez <==> stiltez

sdilten <==> stilten


If I huviese-kate mordrated,

I not estaríe-kate speaking here.

If I huviese-kate mortrated,

I not estaríe-kate spehning here.


When snowest,

I not gowest to the discotek.

When snehest,

I not gehest to the tiscotek.


If wies huviese-kems drinked,

wies starie-kems drucked.

If wies huviese-kems trinked,

wies starie-kems trucked.


I srakest the window,

and I close de dor.

I srehnest the window,

and I close de tor.


I pustate the paper on the dish.

I pusgate the paper on the tish.


I stare-kate foted,

speaking stowed.

I stare-kate fot-hed,

spehning stehed.


wies vare-kems stader making a coteds yesterday in a bar.

wies vare-kems stader mehming a cot-heds yesterday in a bar.


Times of the verbs:

present:

drink

stare-kate drinking

havere-kate drinked.

stare-kate caning drink

havere-kate caned drink

imperfect:

stave-kate drinking

havíe-kate drinked.

stave-kate caning drink

havíe-kate caned drink.

anterior:

vare-kate drink

vare-kate stader drinking

vare-kate havader drinked.

vare-kate stader caning drink

vare-kate havader caned drink

subjuntive:

stuviese-kate drinking

huviese-kate drinked.

stuviese-kate caning drink

huviese-kate caned drink

condicional:

staríe-kate drinking

hauríe-kate drinked.

staríe-kate caning drink

hauríe-kate caned drink

futur:

starete-kate drinking

haurete-kate drinked.

starete-kate caning drink

haurete-kate caned drink


If I huviese-kate comprated,

I staríe-kate caning drink.

If I huviese-kate comprated,

I staríe-kate caning trink.


I not stare-kate caning drink,

I not have sugar-drinks.

I not stare-kate caning trink,

I not have sugar-trinks.

Àlgebra: categoríes

El diagrama es commutatiu per composició vertical horitzontal:


x ---> x+p <---> x+(-p)

x ---> x+(-p) <---> x+p


x ---> px <---> (1/p)·x

x ---> (1/p)·x <---> px


x ---> x^{p} <---> x^{(1/p)}

x ---> x^{(1/p)} <---> x^{p}


x ---> (-x) <---> (-x)

x ---> (-x) <---> (-x)


x ---> (1/x) <---> (1/x)

x ---> (1/x) <---> (1/x)


x ---> xi <---> x(-i)

x ---> x(-i) <---> xi


xi ---> xj <---> x(-j)

xi ---> x(-j) <---> xj


x(-i) ---> xk <---> x(-k)

x(-i) ---> x(-k) <---> xk


x ---> x^{p}+a <---> ( x+(-a) )^{(1/p)}

x ---> ( x+(-a) )^{(1/p)} <---> x^{p}+a


x ---> x^{(1/p)}+a <---> ( x+(-a) )^{p}

x ---> ( x+(-a) )^{p} <---> x^{(1/p)}+a


x ---> ( (-x)+a ) <---> ( (-x)+a )

x ---> ( (-x)+a ) <---> ( (-x)+a )


x ---> ( 1/((1/x)+a) ) <---> ( 1/((1/x)+(-a)) )

x ---> ( 1/((1/x)+(-a)) ) <---> ( 1/((1/x)+a) )


x ---> e^{x} <---> ln(x)

x ---> ln(x) <---> e^{x}


x ---> e^{(-x)} <---> ln(1/x)

x ---> ln(1/x) <---> e^{(-x)}


x ---> x^{2}+2ax <---> ( (-a)+(a^{2}+x)^{(1/2)} )

x ---> ( (-a)+(a^{2}+x)^{(1/2)} ) <---> x^{2}+2ax


x ---> ( f(x) )^{2}+2a·f(x) <---> f^{o(-1)}( (-a)+(a^{2}+x)^{(1/2)} )

x ---> f^{o(-1)}( (-a)+(a^{2}+x)^{(1/2)} ) <---> ( f(x) )^{2}+2a·f(x)

teoria de cordes

1 [o] (-1)

(m/n)·a_{n}·( x(u,v) )^{n} = h·( e^{u}+e^{(-v)} )

(m/n)·a_{n}·( x(u,v) )^{n} = h·( e^{(-u)}+e^{v} )

i [o] (-i)

(m/n)·a_{n}·( x(u,v) )^{n} = h·( e^{iu}+e^{(-i)v} )

(m/n)·a_{n}·( x(u,v) )^{n} = h·( e^{(-i)u}+e^{iv} )


k = e^{(1/4)·pi i} [o] j = e^{(-1)·(1/4)·pi·i}

(m/n)·a_{n}·( x(u,v) )^{n} = h·( e^{ku}+e^{jv} )

(m/n)·a_{n}·( x(u,v) )^{n} = h·( e^{ju}+e^{kv} )

(m/n)·a_{n}·( x(u,v) )^{n} = h·( e^{(-k)u}+e^{(-j)v} )

(m/n)·a_{n}·( x(u,v) )^{n} = h·( e^{(-j)u}+e^{(-k)v} )


(m/n)·a_{n}·( x(u,v) )^{n} = h·( (1/(n+1))·u^{n+1}+(-1)·(1/(n+1))·v^{n+1} )

(m/n)·a_{n}·( x(u,v) )^{n} = h·( (-1)·(1/(n+1))·u^{n+1}+(1/(n+1))·v^{n+1} )


H_{u}(u,v) = int[ x(u,v) ] d[u]

H_{v}(u,v) = int[ x(u,v) ] d[v]

d_{u}[ g(f(u,v)) ] = d_{f(u,v)}[ g(f(u,v)) ]·d_{u}[f(u,v)]

d_{v}[ g(f(u,v)) ] = d_{f(u,v)}[ g(f(u,v)) ]·d_{v}[f(u,v)]


H_{u}(u,v) = ( n/(1+n) )·( e^{u}+e^{(-v)} )^{(1/n)+1} ] [o(u)o] (-1)·e^{(-u)}

H_{v}(u,v) = ( n/(1+n) )·( e^{u}+e^{(-v)} )^{(1/n)+1} ] [o(v)o] (-1)·e^{v}


H_{u}(u,v) = ( n/(1+n) )·( e^{iu}+e^{(-i)v} )^{(1/n)+1} ] [o(u)o] e^{(-i)u}

H_{v}(u,v) = ( n/(1+n) )·( e^{iu}+e^{(-i)v} )^{(1/n)+1} ] [o(v)o] e^{iv}


H_{u}(u,v) = ( n/(1+n) )·( e^{ku}+e^{jv} )^{(1/n)+1} ] [o(u)o] i·e^{(-k)u}

H_{v}(u,v) = ( n/(1+n) )·( e^{ku}+e^{jv} )^{(1/n)+1} ] [o(v)o] (-i)·e^{(-j)v}

H_{u}(u,v) = ( n/(1+n) )·( e^{(-k)u}+e^{(-j)v} )^{(1/n)+1} ] [o(u)o] i·e^{ku}

H_{v}(u,v) = ( n/(1+n) )·( e^{(-k)u}+e^{(-j)v} )^{(1/n)+1} ] [o(v)o] (-i)·e^{jv}


H_{u}(u,v) = ...

... ( n/(1+n) )·( (1/(n+1))·u^{n+1}+(-1)·(1/(n+1))·v^{n+1} )^{(1/n)+1} ] [o(u)o] ...

... (1/((-n)+1))·u^{(-n)+1}

H_{v}(u,v) = ...

... ( n/(1+n) )·( (1/(n+1))·u^{n+1}+(-1)·(1/(n+1))·v^{n+1} )^{(1/n)+1} ] [o(v)o] ...

... (-1)·(1/((-n)+1))·v^{(-n)+1}


d_{x}[E_{u}(x,u)]^{(1/k)} = (1/2)·( S_{uu} )^{2}

d_{x}[E_{v}(x,v)]^{(1/k)} = (1/2)·( S_{vv} )^{2}


E_{u}(x,u) = ...

... (1/2)^{k}·u [o(u)o] ( (1/8)·e^{2u} )^{[o(u)o]2k} [o(u)o] x

E_{v}(x,v) = ...

... (1/2)^{k}·v [o(v)o] ( (-1)·(1/8)·e^{2(-v)} )^{[o(v)o]2k} [o(v)o] x


E_{u}(x,u) = ...

... (1/2)^{k}·u [o(u)o] ( (1/8i)·e^{2i·u} )^{[o(u)o]2k} [o(u)o] x

E_{v}(x,v) = ...

... (1/2)^{k}·v [o(v)o] ( (-1)·(1/8i)·e^{2(-i)·v} )^{[o(v)o]2k} [o(v)o] x


E_{u}(x,u) = ...

... (1/2)^{k}·u [o(u)o] ( (1/8k)·e^{2k·u} )^{[o(u)o]2k} [o(u)o] x

E_{v}(x,v) = ...

... (1/2)^{k}·v [o(v)o] ( (1/8j)·e^{2j·v} )^{[o(v)o]2k} [o(v)o] x

E_{u}(x,u) = ...

... (1/2)^{k}·u [o(u)o] ( (-1)·(1/8k)·e^{2(-k)·u} )^{[o(u)o]2k} [o(u)o] x

E_{v}(x,v) = ...

... (1/2)^{k}·v [o(v)o] ( (-1)·(1/8j)·e^{2(-j)·v} )^{[o(v)o]2k} [o(v)o] x


E_{u}(x,u) = ...

... (1/2)^{k}·u [o(u)o] ( ((2n)!/(2n+3)!)·u^{2n+3} )^{[o(u)o]2k} [o(u)o] x

E_{v}(x,v) = ...

... (1/2)^{k}·v [o(v)o] ( (-1)·((2n)!/(2n+3)!)·v^{2n+3} )^{[o(v)o]2k} [o(v)o] x


d_{x}[F_{u}(x,u)]^{(1/k)} = (1/2)·( S_{uu} )^{2}·x^{n}

d_{x}[F_{v}(x,v)]^{(1/k)} = (1/2)·( S_{vv} )^{2}·x^{n}


F_{u}(x,u) = ...

... (1/2)^{k}·u [o(u)o] ( int[ S_{uu} ] d[u] )^{[o(u)o]2k} [o(u)o] (1/(kn+1))·x^{kn+1}

F_{v}(x,v) = ...

... (1/2)^{k}·v [o(v)o] ( int[ S_{vv} ] d[v] )^{[o(v)o]2k} [o(v)o] (1/(kn+1))·x^{kn+1}

miércoles, 15 de septiembre de 2021

blogger

Mov bx,www[k]

Dec bx

Cicle

Inc bx

Mov ax,[bx]

Out ax

Xor [bx],["/"]

Jz carpeta

Xor [bx],[" "]

Jz final

carpeta

Inter dx

Jmp cicle

final


Mov bx,www[not(k)]

Inc bx

Cicle

Dec bx

In ax

Mov [bx],ax

Sys [bx],["/"]

Jf carpeta

Sys [bx],[" "]

Jf final

carpeta

Outer dx

Jmp cicle

final

integral de series divergents

int[x^{0}] d[x] = sum[ ( x_{n} )^{0} ]

int[x^{0}] d[x] = ...

... ( x_{0} )^{0}+...(oo)...+( x_{n} )^{0} = x

... 0^{0}+...(oo+1)...+n^{0} = oo+1 = oo

... 1+...(n+1)...+1 = n+1


int[f(x)] d[x] = sum[ f(x_{n})·( f(1)+(-1)·f(0) ) ]

int[e^{x}] d[x] = ...

... ( e^{x_{0}}(e+(-1)) )+...(oo)...+( e^{x_{n}}(e+(-1)) ) = e^{x}

... ( e^{0}(e+(-1)) )+...(oo)...+( e^{n}(e+(-1)) ) = e^{oo}+(-1) = e^{oo}

int[x] d[x] = ...

... ( x_{1} )^{1}+...(oo)...+( x_{n} )^{1} = (1/2)·x^{2}

... 1^{1}+...(oo)...+n^{1} = (1/2)·oo^{2}

... 1^{1}+...(n)...+n^{1} = (1/2)·n(n+1)

int[x^{2}] d[x] = ...

... ( x_{1} )^{2}+...(oo)...+( x_{n} )^{2} = (1/3)·x^{3}

... 1^{2}+...(oo)...+n^{2} = (1/3)·oo^{3}

... 1^{2}+...(n)...+n^{2} = (1/6)·n(n+1)(2n+1)

int[x^{3}] d[x] = ...

... ( x_{1} )^{3}+...(oo)...+( x_{n} )^{3} = (1/4)·x^{4}

... 1^{3}+...(oo)...+n^{3} = (1/4)·oo^{4}

... 1^{3}+...(n)...+n^{3} = (1/4)·n^{2}(n+1)^{2}

conjetura:

int[x^{(1/2)}] d[x] = ...

... ( x_{1} )^{(1/2)}+...(oo)...+( x_{n} )^{(1/2)} = (2/3)·x^{(3/2)}

... 1^{(1/2)}+...(oo)...+n^{(1/2)} = (2/3)·oo^{(3/2)}

1^{(1/2)}+...(n)...+n^{(1/2)} = 2·( (1/6)·n^{(1/2)}(n^{(1/2)}+1)·(2n^{(1/2)}+1) )

int[x^{(1/3)}] d[x] = ...

... ( x_{1} )^{(1/3)}+...(oo)...+( x_{n} )^{(1/3)} = (3/4)·x^{(4/3)}

... 1^{(1/3)}+...(oo)...+n^{(1/3)} = (3/4)·oo^{(4/3)}

1^{(1/3)}+...(n)...+n^{(1/3)} = 3·( (1/4)·n^{(2/3)}(n^{(1/3)}+1)^{2} )


int[f(1/x)] d[x] = sum[ f(1/x_{n})·( f(1)+(-1)·f(0) ) ]

int[(1/x)] d[x] = ...

... (1/x_{1})+...(oo)...+(1/x_{n}) = ln(x)

... (1/1)+...(oo)...+(1/n) = ln(oo)

lim[ (1/(n+1))·( 1/ln(1+(1/n)) ) ] = lim[ ( 1/( ln( (1+(1/n))^{n} )+ln(1+(1/n)) ) ) ] = 1

conjetura:

int[(1/x)^{(1/2)}] d[x] = ...

... ( 1/x_{1} )^{(1/2)}+...(oo)...+( 1/x_{n} )^{(1/2)} = (2/1)·x^{(1/2)}

... (1/1)^{(1/2)}+...(oo)...+(1/n)^{(1/2)} = (2/1)·oo^{(1/2)}

(1/1)^{(1/2)}+...(n)...+(1/n)^{(1/2)} = ...

... (3/1)·2·(1/((n^{(1/2)}+p)(n^{(1/2)}+q)))·( (1/6)·n^{(1/2)}(n^{(1/2)}+1)·(2n^{(1/2)}+1) )

int[(1/x)^{(1/3)}] d[x] = ...

... ( 1/x_{1} )^{(1/3)}+...(oo)...+( 1/x_{n} )^{(1/3)} = (3/2)·x^{(2/3)}

... (1/1)^{(1/3)}+...(oo)...+(1/n)^{(1/3)} = (3/2)·oo^{(2/3)}

(1/1)^{(1/3)}+...(n)...+(1/n)^{(1/3)} = ...

... (4/2)·3·(1/((n^{(1/3)}+p)(n^{(1/3)}+q)))·( (1/4)·n^{(2/3)}(n^{(1/3)}+1)^{2} )

 

lim[ ( 1+...(n)...+n )^{n}·( 2/n^{2} )^{n} ] = e

lim[ ( 1^{2}+...(n)...+n^{2} )^{n}·( 6/(n^{2}·(2n+1)) )^{n} ] = e

lim[ ( 1^{3}+...(n)...+n^{3} )^{n}·( 4/(n^{3}·(n+1)) )^{n} ] = e

martes, 14 de septiembre de 2021

françé románico italián

Present:

Ye cantare ye-de-muá.

Tú cantare tú-de-tuá.

Cantare-puá.

Nus cantoms.

Vus cantoz.

Canten-puá.


Pasato-kutzed proxim-çí:

Ye havere ye-de-muá cantato-kutzed.

Tú havere tú-de-tuá cantato-kutzed.

Havere-puá cantato-kutzed.

Nus haveroms cantato-kutzed.

Vus haveroz cantato-kutzed.

Haveren-puá cantato-kutzed.


Nus haveroms cantato-kutzed una cantçiún de liberté,

en celui-çí idiom-çuá.

Vus haveroz cantato-kutzed una cantçiún de liberté,

en celui-lí idiom-çuá.


sacboir [o] cacboir

sé-pont [o] qué-pont

saps-pont [o] caps-pont

sap-pont [o] cap-pont

sacboms [o] cacboms

sacboz [o] cacboz

sacben-puá [o] cacben-puá


Françé romanico italián:

la menjata-kutzed cap-pont de-le-dans le plati-çí.

la menjata-kutzed ne cap-pont de-le-dans le plati-çí.

Françé de le Patuá y Occitán de le Pamuá:

la [ menjata-dom ]-[ menjata ] cap-de-puá de-le-dans le plati-çí.

la [ menjata-dom ]-[ menjata ] ne cap-de-puá de-le-dans le plati-çí.


becboir [o] decboir

buá-pont [o] duá-pont

buáps-pont [o] duáps-pont

buáp-pont [o] duáp-pont

becboms [o] decboms

becboz [o] decboz

becben-puá [o] decben-puá


Ye buá-pont de la Font.

comentarium: latinum

Yo querere-po un granitzatered de limoprum.

Yo querere-po un granitzatered de naranjjem.


Yo querere-po un gelatered de limoprum.

Yo querere-po un gelatered de naranjjem.


Yo vare-po comere longanitzem de porkum

Yo vare-po comere longanitzem de porkum senglare.


Yo vare-po dinare ravioli cuadratered con tomatem.

Yo vare-po dinare tortelini chirculatered con tomatem.


Yo vare-po chenare spagueti alargatered a la carbonarem.

Yo vare-po chenare fideui acortatered a la carbonarem.


Yo havere-po dinatered macarroni alisatered con tomatem.

Yo havere-po dinatered macarroni rallatered con tomatem.


Yo havere-po cochinatered pistoprum semi-rectatered. [ mitatered de la rectem ]

Yo havere-po cochinatered pistoprum semi-chirculatered. [ mitatered del chirculum ]

lunes, 13 de septiembre de 2021

filosofia

Racionalisme:

Del pensament a la experiencia. [*]

De la frase en potencia a la frase realitzada. [**]

A priori en el pensament y a posteriori en l'experiencia.

[*] Fer sense maestre o profesor.

Guanyar el equip-A al equip-B en un joc.

Guanyar el equip-B al equip-A en un joc.

[**] Parlar o Escriure: sabent l'idioma.

Sigensmés parla y aleshores àduc sap l'idioma.

Sigensmés escriu y aleshores àduc sap l'idioma.

( ¬¬( ¬¬P(x) ) ==> S(x) )

Empirisme:

De l'experiencia al pensament. [*]

De la frase realitzada a la frase en potencia. [**]

A priori en l'experiencia y a posteriori en el pensament.

[*] Fer amb maestre o profesor.

Datxnar clase el profesor llegint apunts.

Vatxnar a clase l'alumne escribint apunts.

[**] Escoltar o Llegir: no sabent l'idioma.

Nogensmenys escolta pero sin-embarg no sap l'idioma.

Nogensmenys llegeish pero sin-embarg no sap l'idioma.

( ¬¬¬( ¬¬¬Q(x) ) & ¬S(x) )


Trascendeltanisme

Del ser en potencia al ser realitzat.

Construir.

Muntar.

Del ser ralitzat al ser en potencia.

Destruir.

Desmuntar.


Humanisme:

L'home es bo per naturalesa

perque creu en condenació.

Anti-Humanisme:

L'home es dolent per naturalesa

perque no creu en condenació.


Fielisme

el que és és y és fiel.

El que és, viu para sempre a la casa del Pare.

Aquet-ça és la salvació de aquet mon:

Estimar més al que és que al que no és.

Anti-Fielisme

el que no és no és y és infiel.

El que no és, no viu para sempre a la casa del Pare.

Aquet-ça és la perdició de aquet mon:

Estimar més al que no és que al que és.

mecánica relativista

mc^{2}·( 1/( 1+(-1)·( d_{t}[x]/c )^{2} )^{(1/2)} ) = qgx

mc^{2}·( 1/( 1+(-1)·( d_{t}[y]/c )^{2} )^{(1/2)} ) = (-1)·qgy

d_{t}[x(t)] = c·cos( g(t) )

d_{t}[y(t)] = c·sin( h(t) )

mc = qg·( sin(g(t)) /o(t)o/ g(t) )·sin(g(t))

mc = (-1)·qg·( cos(h(t)) /o(t)o/ h(t) )·cos(h(t))

g(t) = (1/2)·( (qg)/(mc) )·t

h(t) = (-1)·(1/2)·( (qg)/(mc) )·t