sábado, 29 de agosto de 2020

morfosintaxis

Aun estaba en el Paro , porque aun no tenía un trabajo.

[ Aun [x] estaba en [z] , porque A([x]) ]

A([x]) <==> [ aun [x] no tenía [s] ]


Ya no estaba en el Paro , porque ya tenía un trabajo.

[ Ya [x] no estaba en [z] , porque B([x]) ]

B([x]) <==> [ ya [x] tenía [s] ]

ecuació diferencial

( y(x) )^{n}d_{xx}^{2}[y(x)] = f(x)

(1/(n+1))( y(x) )^{n+1} [o(x)o] d_{x}[y(x)] = int[f(x)] d[x] [o(x)o] y(x)

(1/(n+1))(1/(n+2))( y(x) )^{n+2} = ...

... int[ int[f(x)] d[x] ] d[x] [o(xx)o] int[y(x)] d[x]

y(x) / [o(xx)o] / ( int[y(x)] d[x] )^{(1/(n+2))} = ...

... ( (n+1)·(n+2)·int[ int[f(x)] d[x] ] d[x] )^{(1/(n+2))} 

( (n+2)/(n+1) )·( int[y(x)] d[x] )^{((n+1)/(n+2))} = ...

... int[ ( (n+1)·(n+2)·int[ int[f(x)] d[x] ] d[x] )^{(1/(n+2))} ] d[x]

 y(x) = ...

... d_{x}[ ( ( (n+1)/(n+2) )·int[ ( (n+1)·(n+2)·int[ int[f(x)] d[x] ] d[x] )^{(1/(n+2))} ] d[x] )^{((n+2)/(n+1))} ] 

y(x) = ...

... ( int[ ( (n+1)·(n+2)·int[ int[f(x)] d[x] ] d[x] )^{(1/(n+2))} ] d[x] )^{(1/(n+1))} [o(xx)o] ...

... ( (n+1)·(n+2)·int[ int[f(x)] d[x] ] d[x] )^{(1/(n+2))}

d_{x}[y(x)] = ...

... ( int[ ( (n+1)·(n+2)·int[ int[f(x)] d[x] ] d[x] )^{(1/(n+2))} ] d[x] )^{((-n)/(n+1))} [o(x)o] ...

... ( (n+1)·(n+2)·int[ int[f(x)] d[x] ] d[x] )^{((-n)/(n+2))} [o(x)o] (n+1)·int[f(x)] d[x]

 

( 1/y(x) )·d_{xx}^{2}[y(x)] = f(x)

ln[o(x)o](y(x)) [o(x)o] ln[o(x)o](d_{x}[y(x)]) = int[f(x)] d[x]

ln[o(x)o]( y(x) [o(x)o] d_{x}[y(x)] ) = int[f(x)] d[x]

y(x) [o(x)o] d_{x}[y(x)] = exp[o(x)o]( int[f(x)] d[x] )

y(x)  = ( 2·int[ exp[o(x)o]( int[f(x)] d[x] ) ] d[x] )^{(1/2)}


d_{x}[exp[o(x)o]( int[f(x)] d[x] ) / [o(x)o] / ( 2·int[ exp[o(x)o]( int[f(x)] d[x] ) ] d[x] )^{(-1)(1/2)}] = ...

... ( ( 2·int[ exp[o(x)o]( int[f(x)] d[x] ) ] d[x] )^{(1/2)}/exp[o(x)o]( int[f(x)] d[x] ) )·...

... exp[o(x)o]( int[f(x)] d[x] )·f(x) 


( 1/( y(x) )^{2} )·d_{xx}^{2}[y(x)] = f(x)

(-1)·( 1/( y(x) ) ) [o(x)o] d_{x}[y(x)] = int[f(x)] d[x] [o(x)o] y(x)

(-1)·ln[o(xx)o](y(x)) = int[ int[f(x)] d[x] ] d[x] [o(xx)o] int[y(x)] d[x]

exp[o(xx)o]( int[y(x)] d[x] ) [o(xx)o] ( y(x) ) = exp[o(xx)o]( (-1)·int[ int[f(x)] d[x] ] d[x] )

exp[o(xx)o]( int[y(x)] d[x] ) = int[ exp[o(xx)o]( (-1)·int[ int[f(x)] d[x] ] d[x] ) ] d[x] 

y(x) = ( int[ exp[o(xx)o]( (-1)·int[ int[f(x)] d[x] ] d[x] ) ] d[x] )^{(-1)} [o(xx)o]·...

... exp[o(xx)o]( (-1)·int[ int[f(x)] d[x] ] d[x] )

d_{x}[y(x)] = ( int[ exp[o(xx)o]( (-1)·int[ int[f(x)] d[x] ] d[x] ) ] d[x] )^{(-2)} [o(x)o]...

... exp[o(xx)o]( (-2)·int[ int[f(x)] d[x] ] d[x] ) [o(x)o] int[f(x)] d[x] 

ecuacions diferencials y producte integral

( y(x) )^{2} [o(x)o] d_{x}[y(x)] = f(x)

y(x) = ( 3·int[f(x)] d[x] )^{(1/3)}

( 3·int[f(x)] d[x] )^{(2/3)} [o(x)o]...

f(x) / [o(x)o] / ( 3·int[f(x)] d[x] )^{(2/3)} = f(x)


( y(x) )^{n} [o(x)o] d_{x}[y(x)] = f(x)

y(x) = ( (n+1)·int[f(x)] d[x] )^{(1/(n+1))}

( (n+1)·int[f(x)] d[x] )^{(n/(n+1))} [o(x)o]...

f(x) / [o(x)o] / ( (n+1)·int[f(x)] d[x] )^{(n/(n+1))} = f(x)


d_{x}[f(x) / [o(x)o] / ( 3·int[f(x)] d[x] )^{(2/3)}] = ...

... ( ( 3·int[f(x)] d[x] )^{(1/3)}/f(x) )·d_{x}[f(x)]

d_{x}[f(x) / [o(x)o] / ( (n+1)·int[f(x)] d[x] )^{(n/(n+1))}] = ...

... ( ( (n+1)·int[f(x)] d[x] )^{(1/(n+1))}/f(x) )·d_{x}[f(x)]


d_{x}[ d_{x}[g(x)] / [o(x)o] / ( f(x) )^{n} ] = ...

... ( ( 1/((-n)+1) )·( f(x) )^{(-n)+1}/d_{x}[f(x)] )·d_{xx}^{2}[g(x)]


d_{x}[ ( ( 1/((-n)+1) )·( f(x) )^{(-n)+1} / [o(x)o] / d_{x}[f(x)] ) [o(x)o] d_{xx}^{2}[g(x)] ] = ...

... ( ( 1/((-n)+1) )·( f(x) )^{(-n)+1}/d_{xx}^{2}[f(x)] )·d_{xxx}^{3}[g(x)]

viernes, 28 de agosto de 2020

ecuacions diferencials

y(x)·d_{x}[y(x)] = ax^{m}+bx^{n}

y(x) = 2^{(1/2)}·( (1/(m+1))·ax^{m+1}+(1/(n+1))·bx^{n+1} )^{(1/2)}

y(x)·d_{x}[y(x)] = ax^{m}+bx^{n}+cx^{p}

y(x) = 2^{(1/2)}·( (1/(m+1))·ax^{m+1}+(1/(n+1))·bx^{n+1}+(1/(p+1))·cx^{p} )^{(1/2)}

ecuacions diferencials

y(x)·d_{x}[y(x)] = ae^{mx}

y(x) =  a^{(1/2)}·( 2/m )^{(1/2)}·e^{(m/2)·x}


y(x)·d_{x}[y(x)]·d_{xx}[y(x)] = ae^{mx}

y(x) =  a^{(1/3)}·( 3/m )·e^{(m/3)·x}


y(x)·d_{x}[y(x)]·d_{xx}[y(x)]·d_{xxx}^{3}[y(x)] = ae^{mx}

y(x) =  a^{(1/4)}·( 4/m )^{(3/2)}·e^{(m/4)·x}

miércoles, 26 de agosto de 2020

ecuacions diferencials

y(x)·d_{x}[y(x)] = ax^{m}

y(x) = a^{(1/2)}·( 2/(m+1) )^{(1/2)}·x^{(m/2)+(1/2)}


y(x)·d_{x}[y(x)]·d_{xx}^{2}[y(x)] = ax^{m}

y(x) = a^{(1/3)}·( 3/(m+3) )^{(2/3)}·( 3/m )^{(1/3)}·x^{(m/3)+1}


y(x)·d_{x}[y(x)]·d_{xx}^{2}[y(x)]·d_{xxx}^{3}[y(x)] = ax^{m}

y(x) = a^{(1/4)}·( 4/(m+6) )^{(3/4)}·( 4/(m+2) )^{(1/2)}·( 4/(m+(-2)) )^{(1/4)}·x^{(m/4)+(3/2)}


y(x)·d_{xx}^{2}[y(x)] = ax^{m}

y(x) = a^{(1/2)}·( 2/(m+2) )^{(1/2)}·( 2/m )^{(1/2)}·x^{(m/2)+1}


y(x)·d_{xxx}^{3}[y(x)] = ax^{m}

y(x) = a^{(1/2)}·( 2/(m+3) )^{(1/2)}·( 2/(m+1) )^{(1/2)}·( 2/(m+(-1)) )^{(1/2)}·x^{(m/2)+(3/2)}

martes, 25 de agosto de 2020

Axiomas de ventanista y porterista de exteriores

[EA][ A = { x_{i} : montar(x_{i}) = puerta-exterior } ].

x_{1} = puerta-derecha_{j}

puerta-derecha_{1} = bisagra-derecha(s) = (1/a)·e^{is}

puerta-derecha_{2} = puerta-de-giro-derecha(s,r) = (c/2)·sr^{2}

x_{(-1)} = puerta-izquierda_{j}

puerta-izquierda_{(-1)} = bisagra-izquierda(s) = a·e^{(-i)s}

puerta-izquierda_{(-2)} = puerta-de-giro-izquierda(s,r) = (c/2)·sr^{2}

F(s,r) = (1/a)·e^{is}+a·e^{(-i)s}+(c·s·r^{2})

d_{s}[F(s,r)] = e^{is}·(1/a)·i+e^{(-i)s}·a·(-i)+(c·r^{2})

Si e^{is} = x ==> x^{2}·(1/a)·i+(c·r^{2})·x+a·(-i) = 0

s = (1/i)·ln( ( a/(2i) )( (-1)·(c·r^{2})+( (c^{2}·r^{4})+4·((-i)·i) )^{(1/2)} ) )

[Ef][ ... 

... < f : {puerta-exterior_{x}} ---> {puerta-exterior_{y}} & ...

... puerta-exterior_{x} --> f(puerta-exterior_{x}) = puerta-exterior_{y} > ... 

... ]

[Ef^{o(-1)}][ ...

... < f^{o(-1)} : {puerta-exterior_{y}} ---> {puerta-exterior_{x}} & ...

... puerta-exterior_{y} --> f^{o(-1)}(puerta-exterior_{y}) = puerta-exterior_{x} > ...

... ]


[EA][ A = { x_{i} : montar(x_{i}) = ventana } ].

x_{1} = ventana-derecha_{j}(u,v) = cuv

ventana-derecha_{0} = cristal(x,y) = axy

ventana-derecha_{1} = marco-izquierdo(y) = by & ventana-derecha_{(-1)} = marco-derecho(y) = by

ventana-derecha_{2} = marco-inferior(x) = bx & ventana-derecha_{(-2)} = marco-superior(x) = bx

x_{(-1)} = ventana-izquierda_{j}(u,v) = cuv

ventana-izquierda_{0} = cristal(x,y) = axy

ventana-izquierda_{(-1)} = marco-izquierdo(y) = by & ventana-izquierda_{1} = marco-derecho(y)  = by

ventana-izquierda_{(-2)} = marco-inferior(x) = bx & ventana-izquierda_{2} = marco-superior(x) = bx

x_{(-2)} = marco-exterior-izquierdo(v) = dv & x_{2} = marco-exterior-derecho(v)  = dv

x_{(-3)} = marco-exterior-inferior(u) = du & x_{3} = marco-exterior-superior(u) = du

[Ef][ ... 

... < f : {ventana_{x}} ---> {ventana_{y}} & ...

... ventana_{x} --> f(ventana_{x}) = ventana_{y} > ... 

... ]

[Ef^{o(-1)}][ ...

... < f^{o(-1)} : {ventana_{y}} ---> {ventana_{x}} & ...

... ventana_{y} --> f^{o(-1)}(ventana_{y}) = ventana_{x} > ...

... ]

Axiomas de calentero y vaterero

[EA][ A = { x_{i} : montar(x_{i}) = calentador } ].

[Ef][ ... 

... < f : {calentador_{x}} ---> {calentador_{y}} & ...

... calentador_{x} --> f(calentador_{x}) = calentador_{y} > ... 

... ]

[Ef^{o(-1)}][ ...

... < f^{o(-1)} : {calentador_{y}} ---> {calentador_{x}} & ...

... calentador_{y} --> f^{o(-1)}(calentador_{y}) = calentador_{x} > ...

... ]


[EA][ A = { x_{i} : montar(x_{i}) = váter } ].

x_{1} = cadena_{j}

cadena_{1} = tapón-de-agua-derecha(m_{1},q_{1}) = m_{1}d_{t}[y(t)] = q_{1}g+(-1)·(F/2)

cadena_{0} = tapón-de-agua-central(m_{0},q_{0}) = m_{0}d_{t}[y(t)] = q_{0}g+(-F)

cadena_{2} = tapón-de-agua-izquierda(m_{2},q_{2}) = m_{2}d_{t}[y(t)] = q_{2}g+(-1)·(F/2)

tazón_{0} = taza(x,y) = x^{n+1}+y^{m+1}

div[taza(x,y)] = (n+1)(m+1) <==> ...

... x = (m+1)^{(1/n)}·( sin[((n+m)/2)+(-1)](t)/(( (n+m)/2 )+(-1)) )^{( (n+m)/(2n) )} ...

... or ...

... y = (n+1)^{(1/m)}·( cos[((n+m)/2)+(-1)](t)/(( (m+n)/2 )+(-1)) )^{( (n+m)/(2m) )}

tazón_{1} = contra-tapa <==> taza(x,y) = ((n+m)/2)^{( ((n+1)+(m+1))/2 )} or taza(x,y) = 1

tazón_{2} = tapa(t)

d_{x}[ ( sin[((n+m)/2)+(-1)](t) )^{( (n+m)/(2n) )} ] = ...

... ( (n+m)/(2n) )·( sin[((n+m)/2)+(-1)](t) )^{( (m+(-n))/(2n) )}·cos[((n+m)/2)+(-1)](t)

d_{x}[ ( cos[((n+m)/2)+(-1)](t) )^{( (n+m)/(2m) )} ] = ...

... ( (n+m)/(2m) )·( cos[((n+m)/2)+(-1)](t) )^{( (n+(-m))/(2m) )}·(-1)·sin[((n+m)/2)+(-1)](t)

[Ef][ ... 

... < f : {váter_{x}} ---> {váter_{y}} & ...

... váter_{x} --> f(váter_{x}) = váter_{y} > ... 

... ]

[Ef^{o(-1)}][ ...

... < f^{o(-1)} : {váter_{y}} ---> {váter_{x}} & ...

... váter_{y} --> f^{o(-1)}(váter_{y}) = váter_{x} > ...

... ]

domingo, 23 de agosto de 2020

ecuacions de estat

P·V = kT

q·V = kT

(P·V)^{2}+E[a]·(P·V) = (kT)^{2}

(q·V)^{2}+E[b]·(q·V) = (kT)^{2}

(P·V)^{2}+E[c]·(kT) = (kT)^{2}

(q·V)^{2}+E[d]·(kT) = (kT)^{2}


T = (1/k)·( (PV)^{2}+E[a](PV) )^{(1/2)}


d_{V}[ T ] = (1/2)·(1/k)·( 1/(kT) )·( P^{2}·(2V)+(E[a]·P) )

d_{P}[ T ] = (1/2)·(1/k)·( 1/(kT) )·( V^{2}·(2P)+(E[a]·V) )


V = (1/2)·(1/P^{2})·( (-1)·E[a]P+( (E[a]P)^{2}+(-4)·P^{2}·(kT)^{2} )^{(1/2)} )

P = (1/2)·(1/V^{2})·( (-1)·E[a]V+( (E[a]V)^{2}+(-4)·V^{2}·(kT)^{2} )^{(1/2)} )


d_{T}[V] = (-1)·(1/P^{2})·( 1/(V+( E[a]/(2P) )) )·k^{2}·T

d_{T}[P] = (-1)·(1/V^{2})·( 1/(P+( E[a]/(2V) )) )·k^{2}·T


d_{P}[V] = ...

... (-2)·(V/P)+(-1)·(E[a]/P^{2})+(1/2)·(1/P^{3})·( 1/(V+( E[a]/(2P) )) )·( E[a]^{2}+(-4)·(kT)^{2} )

d_{V}[P] = ...

... (-2)·(P/V)+(-1)·(E[a]/V^{2})+(1/2)·(1/V^{3})·( 1/(P+( E[a]/(2V) )) )·( E[a]^{2}+(-4)·(kT)^{2} )


d_{T}[ E[a] ] = ( (2k^{2})/(P·V) )·T

d_{T}[ E[b] ] = ( (2k^{2})/(q·V) )·T

d_{T}[ E[c] ] = k+( (P·V)^{2}/(T^{2}) )

d_{T}[ E[d] ] = k+( (q·V)^{2}/T^{2} )


d_{V}[ E[a] ] = (-1)·(1/P)·( (kT)/V )^{2}+(-P)

d_{P}[ E[a] ] = (-1)·(1/V)·( (kT)/P )^{2}+(-V)


d_{V}[ E[c] ] = (-1)·P^{2}·( V/(kT) )

d_{P}[ E[c] ] = (-1)·V^{2}·( P/(kT) )


V = (1/P)·( (kT)^{2}+(-1)·E[c](kT) )^{(1/2)}

P = (1/V)·( (kT)^{2}+(-1)·E[c](kT) )^{(1/2)}


d_{T}[ V ] = (1/2)·(1/P)·( 1/(PV) )·( k^{2}·(2T)+(-1)·E[c]·k )

d_{T}[ P ] = (1/2)·(1/P)·( 1/(PV) )·( k^{2}·(2T)+(-1)·E[c]·k )


d_{P}[ V ] = (-1)·(V/P)

d_{V}[ P ] = (-1)·(P/V)


T = (1/2)·(1/k^{2})·( E[c]k+( (E[c]k)^{2}+(-4)·k^{2}·(PV)^{2} )^{(1/2)} )


d_{P}[ T ] = (-1)·( 1/k^{2} )·( ( 1/(T+(-1)·( E[c]/(2k) )) )·( V^{2}·P )

d_{V}[ T ] = (-1)·( 1/k^{2} )·( ( 1/(T+(-1)·( E[c]/(2k) )) )·( P^{2}·V )