jueves, 23 de enero de 2020

ecuacions para-exponencial

e^{[..(m)..[x]..(m)..]} = (e^{x}+m)


[..(m)..[0]..(m)..] = ln(m+1)


e^{[..(m+1)..[0]..(m+1)..]} = e^{[..(m)..[0]..(m)..]}+1 = (m+1)+1 = m+2


e^{[..(m)..[x]..(m)..]} = (n+m) <==> x = ln(n)


e^{[..(m)..[x]..(m)..]} = n <==> x = ln(n+(-m))


e^{[..(m)..[z]..(m)..]} = (1/n!)·x^{n} <==> ...
... z = ln( e^{e[( 1/n! )]}+(-m) ) ...
... x = e[( 1/n! )]


e^{[..(m)..[z]..(m)..]} = x^{n} <==> ...
... z = ln( e^{ln(n!)+e[( 1/n! )]}+(-m) ) ...
... x = e[( 1/n! )]


e^{[..(m)..[z]..(m)..]} = (1/p!)·x^{p}+(1/q!)·y^{q} <==> ...
... z = ln( e^{[ e[( 1/p! )]+(-1)·e[( 1/q! )] ]+e[( 1/q! )]}+(-m) ) ...
... x = e[( 1/p! )] ...
... y = e[( 1/q! )]


e^{[..(m)..[z]..(m)..]} = x^{p}+y^{q} <==> ...
... z = ln( e^{[ ln(p!)+e[( 1/p! )]+(-1)·( ln(q!)+e[( 1/q! )] ) ]+ln(q!)+e[( 1/q! )]}+(-m) ) ...
... x = e[( 1/p! )] ...
... y = e[( 1/q! )]

No hay comentarios:

Publicar un comentario