viernes, 22 de mayo de 2020

dinosaurios

{
diplodocus negro
}
{
diplodocus cebra
}
{
diplodocus blanco
}


{
braquiosaurius ( marrón y rojo )
}
{
diplodocus marrón
}
{
braquiosaurius ( marrón y amarillo )
}

dinosaurios

{
Mono-Estegosaurius ( mono-cresta y bi-pincho de cola )
}
{
Bi-Estegosaurius ( bi-cresta y bi-pincho de cola )
}

jueves, 21 de mayo de 2020

familia de gambas

{
Gamba ( sin brazos )
}
{
Escamarlán ( con brazos )
}
{
Langostino ( sin brazos )
}


{
Bogavante ( con brazos )
}
{
Escama-Langosta ( sin brazos )
}
{
Langosta ( con brazos )
}

miércoles, 20 de mayo de 2020

martes, 19 de mayo de 2020

ecuació diferencial exponencial integral

d_{xx}^{2}[ e^{[o(x)o]^{2} ∫ [ ( ∫ [2·g(x)] d[x] )^{(1/2)} ] d[x] } ] = ...
... g(x)·e^{[o(x)o]^{2} ∫ [ ( ∫ [2·g(x)] d[x] )^{(1/2)} ] d[x] }


d_{xx}^{2}[ e^{[o(x)o]^{2}f(x)} ] = e^{[o(x)o]^{2}f(x)}·d_{x}[f(x)]·d_{xx}^{2}[f(x)]


d_{xx}^{2}[y(x)] = g(x)·y(x)


y(x) = e^{[o(x)o]^{2} ∫ [ ( ∫ [2·g(x)] d[x] )^{(1/2)} ] d[x] }


d_{x}[ e^{[o(x)o]^{n}f(x)} ] = e^{[o(x)o]^{n}f(x)} [o(x)o]^{n+(-1)} d_{x}[f(x)]


d_{xx}^{2}[ e^{[o(x)o]^{n}f(x)} ] = ...
... e^{[o(x)o]^{n}f(x)} [o(x)o]^{n+(-2)} d_{x}[f(x)] [o(x)o]^{n+(-2)} d_{xx}^{2}[f(x)]


d_{x,...,x}^{n}[ e^{[o(x)o]^{n}f(x)} ] = e^{[o(x)o]^{n}f(x)}·d_{x}[f(x)]·...(n)...·d_{x,...,x}^{n}[f(x)]

lunes, 18 de mayo de 2020

ecuació diferencial series

y(x) = ∑ ( k^{m}·x^{(k+1)} )


x·d_{x}[y(x)] = ∑ ( k^{(m+1)}·x^{(k+1)} )+y(x)


x·d_{x}[ ∑ ( k^{m}·x^{(k+1)} ) ] = ∑ ( (k+1)·k^{m}·x^{(k+1)} )

ecuació diferencial series

y(x) = ∑ ( k!·x^{(k+1)} )


x^{2}·d_{x}[y(x)] = y(x)


x^{2}·d_{x}[ ∑ ( k!·x^{(k+1)} ) ] = ∑ ( (k+1)!·x^{(k+2)} )


p = k+1 <==> p+1 = k+2


∑ ( (k+1)!·x^{(k+2)} ) = ∑ ( p!·x^{(p+1)} )

domingo, 17 de mayo de 2020

pitch de velocitat y ganancies de so

∫ [0-->x]-[f(x)] d[x] = Vt


∫ [0-->x]-[f(x)·d_{t}[x] ] d[t] = Vt


f(x) = (1/2)·( V^{(1/2)}·t )^{2}


x(t) = V^{(1/2)}·t


∫ [0-->x]-[f(x)] d[x] = Vt^{n}


∫ [0-->x]-[f(x)·d_{t}[x] ] d[t] = Vt^{n}


kn+k=1


f(x) = (1/(n+1))·( V^{(1/(n+1))}·t )^{(n+1)}


x(t) = V^{(1/(n+1))}·t


∫ [0-->x]-[f(x)] d[x] = V^{m}t^{n}


∫ [0-->x]-[f(x)·d_{t}[x] ] d[t] = V^{m}t^{n}


f(x) = (1/(n+1))·( V^{(m/(n+1))}·t )^{(n+1)}


x(t) = V^{(m/(n+1))}·t

comént donc-cas becbe-çí

sóc-de-puá, avec le red-bull,
tant donc-cas becbe-çí com donc-cas becbe-çuá.


ne sóc-de-puá, sansvec le red-bull,
tant donc-cas becbe-lí com donc-cas becbe-luá.


sóc-de-puá, avec la coca-col,
tant donc-cas becbe-çí com donc-cas becbe-çuá.


ne sóc-de-puá, sansvec la coca-col,
tant donc-cas becbe-lí com donc-cas becbe-luá.