{
diplodocus negro
}
{
diplodocus cebra
}
{
diplodocus blanco
}
{
braquiosaurius ( marrón y rojo )
}
{
diplodocus marrón
}
{
braquiosaurius ( marrón y amarillo )
}
viernes, 22 de mayo de 2020
dinosaurios
{
Mono-Estegosaurius ( mono-cresta y bi-pincho de cola )
}
{
Bi-Estegosaurius ( bi-cresta y bi-pincho de cola )
}
Mono-Estegosaurius ( mono-cresta y bi-pincho de cola )
}
{
Bi-Estegosaurius ( bi-cresta y bi-pincho de cola )
}
jueves, 21 de mayo de 2020
familia de gambas
{
Gamba ( sin brazos )
}
{
Escamarlán ( con brazos )
}
{
Langostino ( sin brazos )
}
{
Bogavante ( con brazos )
}
{
Escama-Langosta ( sin brazos )
}
{
Langosta ( con brazos )
}
Gamba ( sin brazos )
}
{
Escamarlán ( con brazos )
}
{
Langostino ( sin brazos )
}
{
Bogavante ( con brazos )
}
{
Escama-Langosta ( sin brazos )
}
{
Langosta ( con brazos )
}
miércoles, 20 de mayo de 2020
polinomis y divisió
[∃n][ x+1 | x^{2}+3x+n ]
x^{2}+3x+n = (x+1)(x+2)+( n+(-2) )
n=2 <==> x+1 | x^{2}+3x+n
x^{2}+3x+n = (x+1)(x+2)+( n+(-2) )
n=2 <==> x+1 | x^{2}+3x+n
martes, 19 de mayo de 2020
ecuació diferencial exponencial integral
d_{xx}^{2}[ e^{[o(x)o]^{2} ∫ [ ( ∫ [2·g(x)] d[x] )^{(1/2)} ] d[x] } ] = ...
... g(x)·e^{[o(x)o]^{2} ∫ [ ( ∫ [2·g(x)] d[x] )^{(1/2)} ] d[x] }
d_{xx}^{2}[ e^{[o(x)o]^{2}f(x)} ] = e^{[o(x)o]^{2}f(x)}·d_{x}[f(x)]·d_{xx}^{2}[f(x)]
d_{xx}^{2}[y(x)] = g(x)·y(x)
y(x) = e^{[o(x)o]^{2} ∫ [ ( ∫ [2·g(x)] d[x] )^{(1/2)} ] d[x] }
d_{x}[ e^{[o(x)o]^{n}f(x)} ] = e^{[o(x)o]^{n}f(x)} [o(x)o]^{n+(-1)} d_{x}[f(x)]
d_{xx}^{2}[ e^{[o(x)o]^{n}f(x)} ] = ...
... e^{[o(x)o]^{n}f(x)} [o(x)o]^{n+(-2)} d_{x}[f(x)] [o(x)o]^{n+(-2)} d_{xx}^{2}[f(x)]
d_{x,...,x}^{n}[ e^{[o(x)o]^{n}f(x)} ] = e^{[o(x)o]^{n}f(x)}·d_{x}[f(x)]·...(n)...·d_{x,...,x}^{n}[f(x)]
... g(x)·e^{[o(x)o]^{2} ∫ [ ( ∫ [2·g(x)] d[x] )^{(1/2)} ] d[x] }
d_{xx}^{2}[ e^{[o(x)o]^{2}f(x)} ] = e^{[o(x)o]^{2}f(x)}·d_{x}[f(x)]·d_{xx}^{2}[f(x)]
d_{xx}^{2}[y(x)] = g(x)·y(x)
y(x) = e^{[o(x)o]^{2} ∫ [ ( ∫ [2·g(x)] d[x] )^{(1/2)} ] d[x] }
d_{x}[ e^{[o(x)o]^{n}f(x)} ] = e^{[o(x)o]^{n}f(x)} [o(x)o]^{n+(-1)} d_{x}[f(x)]
d_{xx}^{2}[ e^{[o(x)o]^{n}f(x)} ] = ...
... e^{[o(x)o]^{n}f(x)} [o(x)o]^{n+(-2)} d_{x}[f(x)] [o(x)o]^{n+(-2)} d_{xx}^{2}[f(x)]
d_{x,...,x}^{n}[ e^{[o(x)o]^{n}f(x)} ] = e^{[o(x)o]^{n}f(x)}·d_{x}[f(x)]·...(n)...·d_{x,...,x}^{n}[f(x)]
lunes, 18 de mayo de 2020
ecuació diferencial series
y(x) = ∑ ( k^{m}·x^{(k+1)} )
x·d_{x}[y(x)] = ∑ ( k^{(m+1)}·x^{(k+1)} )+y(x)
x·d_{x}[ ∑ ( k^{m}·x^{(k+1)} ) ] = ∑ ( (k+1)·k^{m}·x^{(k+1)} )
x·d_{x}[y(x)] = ∑ ( k^{(m+1)}·x^{(k+1)} )+y(x)
x·d_{x}[ ∑ ( k^{m}·x^{(k+1)} ) ] = ∑ ( (k+1)·k^{m}·x^{(k+1)} )
ecuació diferencial series
y(x) = ∑ ( k!·x^{(k+1)} )
x^{2}·d_{x}[y(x)] = y(x)
x^{2}·d_{x}[ ∑ ( k!·x^{(k+1)} ) ] = ∑ ( (k+1)!·x^{(k+2)} )
p = k+1 <==> p+1 = k+2
∑ ( (k+1)!·x^{(k+2)} ) = ∑ ( p!·x^{(p+1)} )
x^{2}·d_{x}[y(x)] = y(x)
x^{2}·d_{x}[ ∑ ( k!·x^{(k+1)} ) ] = ∑ ( (k+1)!·x^{(k+2)} )
p = k+1 <==> p+1 = k+2
∑ ( (k+1)!·x^{(k+2)} ) = ∑ ( p!·x^{(p+1)} )
domingo, 17 de mayo de 2020
pitch de velocitat y ganancies de so
∫ [0-->x]-[f(x)] d[x] = Vt
∫ [0-->x]-[f(x)·d_{t}[x] ] d[t] = Vt
f(x) = (1/2)·( V^{(1/2)}·t )^{2}
x(t) = V^{(1/2)}·t
∫ [0-->x]-[f(x)] d[x] = Vt^{n}
∫ [0-->x]-[f(x)·d_{t}[x] ] d[t] = Vt^{n}
kn+k=1
f(x) = (1/(n+1))·( V^{(1/(n+1))}·t )^{(n+1)}
x(t) = V^{(1/(n+1))}·t
∫ [0-->x]-[f(x)] d[x] = V^{m}t^{n}
∫ [0-->x]-[f(x)·d_{t}[x] ] d[t] = V^{m}t^{n}
f(x) = (1/(n+1))·( V^{(m/(n+1))}·t )^{(n+1)}
x(t) = V^{(m/(n+1))}·t
∫ [0-->x]-[f(x)·d_{t}[x] ] d[t] = Vt
f(x) = (1/2)·( V^{(1/2)}·t )^{2}
x(t) = V^{(1/2)}·t
∫ [0-->x]-[f(x)] d[x] = Vt^{n}
∫ [0-->x]-[f(x)·d_{t}[x] ] d[t] = Vt^{n}
kn+k=1
f(x) = (1/(n+1))·( V^{(1/(n+1))}·t )^{(n+1)}
x(t) = V^{(1/(n+1))}·t
∫ [0-->x]-[f(x)] d[x] = V^{m}t^{n}
∫ [0-->x]-[f(x)·d_{t}[x] ] d[t] = V^{m}t^{n}
f(x) = (1/(n+1))·( V^{(m/(n+1))}·t )^{(n+1)}
x(t) = V^{(m/(n+1))}·t
comént donc-cas becbe-çí
sóc-de-puá, avec le red-bull,
tant donc-cas becbe-çí com donc-cas becbe-çuá.
ne sóc-de-puá, sansvec le red-bull,
tant donc-cas becbe-lí com donc-cas becbe-luá.
sóc-de-puá, avec la coca-col,
tant donc-cas becbe-çí com donc-cas becbe-çuá.
ne sóc-de-puá, sansvec la coca-col,
tant donc-cas becbe-lí com donc-cas becbe-luá.
tant donc-cas becbe-çí com donc-cas becbe-çuá.
ne sóc-de-puá, sansvec le red-bull,
tant donc-cas becbe-lí com donc-cas becbe-luá.
sóc-de-puá, avec la coca-col,
tant donc-cas becbe-çí com donc-cas becbe-çuá.
ne sóc-de-puá, sansvec la coca-col,
tant donc-cas becbe-lí com donc-cas becbe-luá.
Suscribirse a:
Entradas (Atom)