Excedente gasista en la tarifa eléctrica:
Tarifa plana:
Si 0 [< t [< T ==> f(t) = 22·(€/día)
Si 0 [< t [< T ==> g(t) = 44·(€/día)
E(0,T) = ( G(T)+(-1)·G(0) )+(-1)( F(T)+(-1)·F(0) ) = 22·T
Tarifa variable con impuesto:
Si 1 [< t [< T ==> f(t) = (22+2)·(t/12)·(€/hora)
Si 1 [< t [< T ==> g(t) = (44+4)·(t/12)·(€/hora)
E(1,T) = ( G(T)+(-1)·G(1) )+(-1)( F(T)+(-1)·F(1) ) = T^{2}+(-1)
Si T = 12 ==> 144+(-1) = 143
Si 1 [< t [< T ==> f(t) = (22+2)·( (13+(-t))/12 )·(€/hora)
Si 1 [< t [< T ==> g(t) = (44+4)·( (13+(-t))/12 )·(€/hora)
E(1,T) = ( G(T)+(-1)·G(1) )+(-1)( F(T)+(-1)·F(1) ) = 26·( T+(-1) )+(-1)·T^{2}+1
Si T = 12 ==> 26·11+(-144)+1 = 143
Tarifa variable con impuesto:
Sábado y Domingo:
Si 1 [< t [< T ==> f(t) = (22+2)·(t/24)·(€/hora)
Si 1 [< t [< T ==> g(t) = (44+4)·(t/24)·(€/hora)
E(1,T) = ( G(T)+(-1)·G(1) )+(-1)( F(T)+(-1)·F(1) ) = (1/2)·( T^{2}+(-1) )
Si T = 24 ==> (1/2)·( 576+(-1) ) = (575/2)
Si 1 [< t [< T ==> f(t) = (22+2)·( (25+(-t))/24 )·(€/hora)
Si 1 [< t [< T ==> g(t) = (44+4)·( (25+(-t))/24 )·(€/hora)
E(1,T) = ( G(T)+(-1)·G(1) )+(-1)( F(T)+(-1)·F(1) ) = 25·(T+(-1))+(1/2)·( (-1)·T^{2}+1 )
Si T = 24 ==> 25·23+(1/2)·( (-576)+1 ) = (575/2)
Un ser de constructor cuando muere,
si quiere nacer tiene que entrar en el túnel de luz,
y si quiere ser un espíritu tiene que entrar en el túnel de tinieblas,
y ir-se al universo blanco.
Un ser de destructor cuando muere,
si quiere nacer tiene que entrar en el túnel de tinieblas,
y si quiere ser un espíritu tiene que entrar en el túnel de luz,
y ir-se al universo negro.
( n!/( m!·(n+(-m))! ) )+( n!/( (m+1)!·(n+(-1)·(m+1))! ) ) = ...
... ( n!·(m+1)/( (m+1)!·(n+(-m))! ) )+( n!·(n+(-m))/( (m+1)!·(n+(-m))! ) ) = ...
... ( (n+1)!/( (m+1)!·((n+1)+(-1)·(m+1))! ) )
(x+y)^{n+1} = (x+y)^{n}·(x+y) = ...
... sum[ [ n // k ]·x^{n+(-k)}·y^{k} ]·(x+y) = ...
... sum[ [ n // p ]·x^{n+(-p)}·y^{p+1}+[ n // k ]·x^{(n+1)+(-k)}·y^{k} ] = ...
... sum[ [ n // p ]·x^{(n+1)+(-1)·(p+1)}·y^{p+1}+[ n // k ]·x^{(n+1)+(-k)}·y^{k} ] = ...
... sum[ [ n // (k+(-1)) ]·x^{(n+1)+(-k)}·y^{k}+[ n // k ]·x^{(n+1)+(-k)}·y^{k} ] = ...
... sum[ ( [ n // (k+(-1)) ]+[ n // k ] )·x^{(n+1)+(-k)}·y^{k} ] = ...
... sum[ [ (n+1) // k ]·x^{(n+1)+(-k)}·y^{k} ]
x^{n}+(-1)·y^{n} = (x+(-y))·( x^{n+(-1)}+...(n)...+y^{n+(-1)} )
x^{n+1}+(-1)·y^{n+1}+xy·( x^{n+(-1)}+(-1)·y^{n+(-1)} ) = ...
... (x+y)·(x+(-y))·( x^{n+(-1)}+...(n)...+y^{n+(-1)} )
x^{n+1}+(-1)·y^{n+1}+xy·( x^{n+(-1)}+(-1)·y^{n+(-1)} ) = ...
... (x+(-y))·( x^{n}+...(n+1)...+y^{n} )+(x+(-y))·xy·( x^{n+(-2)}+...(n+(-1))...+y^{n+(-2)} )
x^{n+1}+(-1)·y^{n+1} = (x+(-y))·( x^{n}+...(n)...+y^{n} )
Vos metéis el dedo en el culo,
si ya queréis saber si la gente es.
No vos metáis el dedo en el culo,
si aun no queréis saber si la gente es.
Hamiltoniano de Srödinguer:
ih·d_{t}[f(r,t)] = E(r)·f(r,t)
f(r,t) = e^{int[ ( 1/(ih) )·E(r) ]d[t]}
Indeterminación:
int[ E(r) ]d[t] >] ih
f(r,t) = e^{( 1/(ih) )·int[ E(r) ]d[t]} >] e
Lagraniano de Heisenberg:
(-1)·( h^{2}/(2m) )·d_{r}[h(r)]^{2} = E(r)·h(r)
h(r) = (1/4)·( int[ ( (-1)·( (2m)/h^{2} )·E(r) )^{(1/2)} ]d[r] )^{2}
Indeterminación:
int[ p(r) ]d[r] >] ih
h(r) >] (1/4)·( ( 1/(ih) )·int[ (2m·E(r))^{(1/2)} ]d[r] )^{2} >] (1/4)
Hamiltoniano de Heisenberg-Srödinguer:
ihc·d_{r}[g(r)] = E(r)·g(r)
f(r) = e^{int[ ( 1/(ihc) )·E(r) ]d[r]}
Indeterminación:
int[ p(r) ]d[r] >] ih
f(r,t) = e^{( 1/(ih) )·int[ (1/c)·E(r) ]d[t]} >] e
m·d_{xx}^{2}[y(x)] = ax^{2}·y(x)
y(x) = ( F(k+2) )·( (a/m)^{(1/4)}·x )^{k+2}
d_{xx}^{2}[y(x)] = ( F(k+(-2)) )·( (a/m)^{(1/4)}·x )^{k}·(a/m)^{(1/2)}
d_{xx}^{2}[y(x)] = ( F(k+2) )·( (a/m)^{(1/4)}·x )^{k+4}·(a/m)^{(1/2)}
m·d_{x}[y(x)] = ax·y(x)
y(x) = ( F(k+1) )·( (a/m)^{(1/2)}·x )^{k+1}
d_{x}[y(x)] = ( F(k+(-1)) )·( (a/m)^{(1/2)}·x )^{k}·(a/m)^{(1/2)}
d_{x}[y(x)] = ( F(k+1) )·( (a/m)^{(1/2)}·x )^{k+2}·(a/m)^{(1/2)}
F(k+1)·(k+1) = F(k+(-1))
F(k+2)·(k+2)·(k+1) = F(k+(-2))
m·d_{xx}^{2}[y(x)] = ax·y(x)
y(x) = ( G(k+2) )·( (a/m)^{(1/3)}·x )^{k+2}
d_{xx}^{2}[y(x)] = ( G(k+(-1)) )·( (a/m)^{(1/3)}·x )^{k}·(a/m)^{(2/3)}
d_{xx}^{2}[y(x)] = ( G(k+2) )·( (a/m)^{(1/3)}·x )^{k+3}·(a/m)^{(2/3)}
Mecánica Lagraniana:
p(t) = m·d_{t}[x]
F(t) = m·d_{tt}^{2}[x]
E(t) = (m/2)·d_{t}[x]^{2}
Mecánica Hamiltoniana:
p(t) = mc·ln(d_{t}[x])
F(t) = mc·(d_{tt}^{2}[x]/d_{t}[x])
E(t) = mc·d_{t}[x]
Mecánica Relativista:
p(t) = m·d_{t}[x]·( 1/( 1+(-1)·(d_{t}[x]/c)^{2} )^{(1/2)} )
F(t) = m·d_{tt}^{2}[x]·( 1/( 1+(-1)·(d_{t}[x]/c)^{2} )^{(3/2)} )
E(t) = mc^{2}·( 1/( 1+(-1)·(d_{t}[x]/c)^{2} )^{(1/2)}+(-1) )+mc^{2}
p(t) = int[ F(t) ]d[t]
F(t) = d_{t}[p(t)]
E(t) = int[ F(t) ]d[x] = int[ F(t)·d_{t}[x] ]d[t]
F(t) = d_{x}[E(t)] = ( d_{t}[E(t)]/d_{t}[x] )
E(v) = int[ d_{v}[p(v)]·v ]d[v] = p(v)·v+(-1)·int[ p(v) ]d[v]
p(v) = int[ (1/v)·d_{v}[E(v)] ]d[v]
Lo que les pasa a los seres de destructor,
por odiar a los infieles,
que son sus centros de constructor,
y se van al universo negro.
Lo que les pasa a los seres de constructor,
por amar a los infieles,
que son sus centros de destructor,
y se van al universo blanco.
Las infieles tienen un centro de constructor en la cara,
y un centro de destructor en el chocho y apesta.
Los infieles tienen un centro de constructor en la cara,
y un centro de destructor en la polla y apesta.
Eth-eneth cutx blancús,
está-de-puá ben aparcat.
Eth-eneth cutx negrús,
está-de-puá mal aparcat.
Eth-eneth idium occitá
el parlen-puá benement.
Eth-eneth idium occitá,
el parlen-puá malament.
Arte:
[En][ sum[k = 1]-[n][ k ] = ln(n)+O(n) ]
Exposición:
n = 1
f(k) = 1
(1/2) = 1+(-1)·(1/2) [< 1+(-1)·( ln(n)/n ) [< 1
lim[ (ln(n)/n) ] [< (1/2)
Arte:
[En][ sum[k = 1]-[n][ (1/k) ] = ln(n)+O(n) ]
Exposición:
n = 1
f(1/k) = 1
(1/2) = 1+(-1)·(1/2) [< 1+(-1)·( ln(n)/n ) [< 1
lim[ (ln(n)/n) ] [< (1/2)
Teorema:
2n [< 2^{n}
Demostración:
2·(n+1) = 2n+2 [< 2^{n}+2 [< 2^{n}+2^{n} = 2^{n+1}
Teorema:
n^{2} [< 3^{n}
Demostración:
(n+1)^{2} = n^{2}+2n+1 [< 3^{n}+3^{n}+3^{n} = 3^{n+1}
2n [< 2^{n} [< 3^{n}
Teorema:
n^{3} [< 4^{n+1}
Demostración:
(n+1)^{3} = n^{3}+3n^{2}+3n+1 [< 4^{n+1}+4^{n+1}+4^{n+1}+4^{n+1} = 4^{n+2}
3n^{2} [< 3^{n+1} [< 4^{n+1}
3n [< 8n = 4·2n [< 4·2^{n} [< 4^{n+1}
Si k >] 1 ==> lim[ ( (1^{k}+...+n^{k})/n^{k} ) ] = ( oo/(k+1) )+(1/2)
( (n+1)^{k}+(-1)·( (k+(-1))/2 )·n^{k+(-1)} )/( (n+1)^{k}+(-1)·n^{k} )
lim[ (1+...(n)...+n)^{(1/ln(n))} ] = e^{1+[1]}
En la Tierra era Jûan Garriga Vila-de-Sauron, piloto de motos,
pero morí el 2015 y me vatchné a Cygnus-Kepler.
Mandamientos de Destructor y de Constructor:
Adorarás al Señor tu Dios tu Padre,
porque los dos tienen Dios.
Adorarás al Señora tu Diosa tu Madre,
porque los dos tienen Diosa.
No matarás,
porque los dos mueren.
No cometerás adulterio,
porque los dos nacen.
Mandamientos de Destructor:
Desearás alguna cosa que le pertenezca al prójimo,
porque no se tiene Gestalt.
No desearás ninguna cosa que le pertenezca al próximo,
porque no se tiene Gestalt.
Robarás la propiedad,
porque no se siente la propiedad.
Robarás la des-propiedad,
porque no se siente la des-propiedad.
Des-honrarás al padre o a la madre,
porque se tienen que pinchar,
para sacar el constructor sanguíneo.
Derás o Darás falso testimonio,
porque es destructor.
Mandamientos constitucionales de Destructor:
Se puede ser próximo,
de diferente territorio geográfico,
porque se puede desear,
lo que le pertenece al prójimo.
Se puede ser prójimo,
del mismo territorio geográfico,
porque no se puede desear,
lo que le pertenece al próximo.
Si ( f({a_{k}}) = {f(a_{k})} & g({b_{k}}) = {g(b_{k})} ) ==> ...
... (g o f)({a_{k}}) = {(g o f)({a_{k}})}
Si ( ( A [<< E <==> f(A) [<< E ) & ( B [<< E <==> g(B) [<< E ) ) ==> ...
... ( A [<< E <==> (g o f)(A) [<< E )
( {a_{1},...,a_{n}} [&] {a_{i}} ) [ || ] ( {a_{1},...,a_{n}} [&] {a_{j}} ) = ...
... (1+1)·x^{k} = 2x^{k}
( {a_{1},...,a_{n}} [ \ ] {a_{i}} ) [ || ] ( {a_{1},...,a_{n}} [ \ ] {a_{j}} ) = ...
... ((-1)+(-1))·x^{k} = (-2)·x^{k}
( {a_{1},...,a_{n}} [&] {a_{i},a_{j}} ) [x] ( {a_{1},...,a_{n}} [&] {a_{u},a_{v}} ) = ...
... ( {a_{1},...,a_{n}} [x] {a_{1},...,a_{n}} ) [&] ...
... {<a_{i},a_{u}>,<a_{i},a_{v}>,<a_{j},a_{u}>,<a_{j},a_{v}>} = ...
... (2·2)·x^{k} = 4x^{k}
( {a_{1},...,a_{n}} [ \ ] {a_{i},a_{j}} ) [x] ( {a_{1},...,a_{n}} [ \ ] {a_{u},a_{v}} ) = ...
... ( {a_{1},...,a_{n}} [x] {a_{1},...,a_{n}} ) [ \ ] ...
... {<a_{i},a_{u}>,<a_{i},a_{v}>,<a_{j},a_{u}>,<a_{j},a_{v}>} = ...
... ((-2)·(-2))·x^{k} = (-4)·x^{k}
< {a_{1},...,a_{n}} , {a_{k}} > [ || ] < {b_{1},...,b_{n}} , {b_{k}} > = ...
... ((n+1)+(n+1))·x^{n} = (2n+2)·x^{n}
< {a_{1},...,a_{n}} , {a_{k}} > [x] < {b_{1},...,b_{n}} , {b_{k}} > = ...
... {a_{1},...,a_{n}} [x] {b_{1},...,b_{n}} [ || ] ...
... {a_{k}} [x] {b_{1},...,b_{n}} [ || ] {a_{1},...,a_{n}} [x] {b_{k}} [ || ]...
... {<a_{k},b_{k}>} = ...
... ((n+1)·(n+1))·x^{n} = (n^{2}+2n+1)·x^{n}
Si ( (f o...(p)...o f)(n) = n & (g o...(q)...o g)(n) = n ) ==> ...
... ( (g o...(q)...o g) o (f o...(p)...o f) )(n) = n
1-2-3-1 o 1-2-1 = (x+3)·(x+2) = x·(x+5)+6
Si x+5 = 2 ==> x·(x+5)+6 = 2·(x+3) = 0
Si x+5 = 3 ==> x·(x+5)+6 = 3·(x+2) = 0