viernes, 14 de mayo de 2021

economia: socialisme bolivarià vs social-democracia bolivariana

preu de venta:

B(x) = kpx+(-n)·x^{k}

d_{x}[B(x)] = kp+( (-n)·k )·x^{k+(-1)} = 0

x = 1

p = n


socialisme bolivarià:

impostos:

B(x) = (q/k)·x+(-n)·x^{(1/k)}

d_{x}[B(x)] = (q/k)+(-n)·x^{(1/k)+(-1)} = 0

x = 1

q = n

preu total

p+q = 2n

social-democracia bolivariana:

impostos:

B(x) = qx+(-n)·x^{(1/k)}

d_{x}[B(x)] = q+(-n)·x^{(1/k)+(-1)} = 0

x = 1

q = (n/k)

preu total

p+q = n+(n/k)


socialisme bolivarià:

impostos k = 2 & 50%(p+q) = n

social-democracia bolivariana:

impostos k = 2 & 33.3...%(p+q) = (n/2)


peatge:

40 treballadors per peatge

( Dilluns-Dimarts-Dimecres-Dijous )

(5+5) pel día

(5+5) per la nit

( Divendres-Disabte-Diumenge )

(5+5) pel día

(5+5) per la nit

socialisme bolivarià:

peatge:

n = 2€

40·(n/40) = 2€

n = 2€

n+n = 4€

social-democracia bolivariana:

peatge:

n = 2€

40·(n/40) = 2€

(n/40) = 0.05€

n+(n/10) = 2.05€


metro 1 zona:

20 treballadors per estació

( Dilluns-Dimarts-Dimecres-Dijous )

4 pel matí

4 per la tarda

2 per la nit

( Divendres-Disabte-Diumenge )

4 pel matí

4 per la tarda

2 per la nit

socialisme bolivarià:

estació:

n = 1€

20·(n/20) = 1€

n = 1€

n+n = 2€

social-democracia bolivariana:

estació:

n = 1€

20·(n/20) = 1€

(n/20) = 0.05€

n+(n/20) = 1.05€


rodalies 2 zones:

30 treballadors per estacions

( Dilluns-Dimarts-Dimecres-Dijous )

6 pel matí

6 per la tarda

3 per la nit

( Divendres-Disabte-Diumenge )

6 pel matí

6 per la tarda

3 per la nit

socialisme bolivarià:

estacions:

n = 1.50€

30·(n/30) = 1.50€

n = 1.50€

n+n = 3€

social-democracia bolivariana:

estacions:

n = 1.50€

30·(n/30) = 1.50€

(n/30) = 0.05€

n+(n/30) = 1.55€


PP <==> social-demócrata

Ciudadanos <==> social-demócrata bolivarià

PSOE <==> socialista

Podemos <==> socialista bolivarià


Junts <==> social-demócrata

PDeCat <==> social-demócrata bolivarià

Esquerra <==> socialista

CUP <==> socialista bolivarià

sistemes en derivades parcials

d_{x}[u(x,y,z)]+(-1)·(1/x)·u(x,y,z) = 0

d_{y}[u(x,y,z)]+(-1)·(1/y)·u(x,y,z) = 0

d_{z}[u(x,y,z)]+(-1)·(1/z)·u(x,y,z) = 0

u(x,y,z) = xyz


d_{x}[u(x,y,z)]+(-1)·(n/x)·u(x,y,z) = 0

d_{y}[u(x,y,z)]+(-1)·(n/y)·u(x,y,z) = 0

d_{z}[u(x,y,z)]+(-1)·(n/z)·u(x,y,z) = 0

u(x,y,z) = n·xyz


d_{x}[u(x,y)]+y·u(x,y) = f(x)

d_{y}[u(x,y)]+x·u(x,y) = f(y)

u(x,y) = e^{(-x)·y}·int[ f(x)·e^{xy} ] d[x]+e^{(-y)·x}·int[ f(y)·e^{yx} ] d[y]

e^{(-y)·x}·d_{x}[ int[ f(y)·e^{yx} ] d[y] ] = f(y)·d_{x}[y] = 0


d_{x}[u(x,y)]+(2/x)·u(x,y) = x

d_{y}[u(x,y)]+(2/y)·u(x,y) = y

u(x,y) = (x/y)+(-1)·(1/y^{2})+(y/x)+(-1)·(1/x^{2})

y = (2/x) & x = (2/y)

(2/x)·u(x,y) = (2/x)·(x^{2}/2)+(-1)·(2/x)·(x^{2}/4)+(2/x)·(2/x^{2})+(-1)·(2/x)·(1/x^{2})

(2/y)·u(x,y) = (2/y)·(2/y^{2})+(-1)·(2/y)·(1/y^{2})+(2/y)·(y^{2}/2)+(-1)·(2/y)·(y^{2}/4)

jueves, 13 de mayo de 2021

tex

\overset{#1}{#2}

overset( int a[i][j][k] , int b[i][j][k] , int x , int y )

{

put-grafic-color( a[i][j][k] , x , y );

put-grafic-color( b[i][j][k] , x , y+z );

}

\underset{#1}{#2}

underset( int a[i][j][k] , int b[i][j][k] , int x , int y )

{

put-grafic-color( a[i][j][k] , x , y );

put-grafic-color( b[i][j][k] , x , y+not(z) );

}


\frac{#1}{#2}

frac( int a[i][j][k] , int b[i][j][k] , int x , int y )

{

put-grafic-color( a[i][j][k] , x , y+(z/2) );

put-grafic-color( bar[i][j][k] , x , y );

put-grafic-color( b[i][j][k] , x , y+not(z/2) );

}

\integral-frac{#1}{#2}

integral-frac( int a[i][j][k] , int b[i][j][k] , int x , int y )

{

put-grafic-color( a[i][j][k] , x , y+(z/2) );

put-grafic-color( bar[i][j][k] , x , y+(z/4) );

put-grafic-color( bar[i][j][k] , x , y+not(z/4) );

put-grafic-color( b[i][j][k] , x , y+not(z/2) );

}


{#1}^{#2}

^( int a[i][j][k] , int b[i][j][k] , int x , int y )

{

put-grafic-color( a[i][j][k] , x , y );

put-grafic-color( b[i][j][k] , x+z , y+z );

}

{#1}_{#2}

_( int a[i][j][k] , int b[i][j][k] , int x , int y )

{

put-grafic-color( a[i][j][k] , x , y );

put-grafic-color( b[i][j][k] , x+z , y+not(z) );

}

{#1}^_^{#2}

^_^( int a[i][j][k] , int b[i][j][k] , int x , int y )

{

put-grafic-color( a[i][j][k] , x , y );

put-grafic-color( b[i][j][k] , x+not(z) , y+z );

}

{#1}_^_{#2}

_^_( int a[i][j][k] , int b[i][j][k] , int x , int y )

{

put-grafic-color( a[i][j][k] , x , y );

put-grafic-color( b[i][j][k] , x+not(z) , y+not(z) );

}

miércoles, 12 de mayo de 2021

economia: social-democracia vs socialisme

La empresa ha de decidir:

si és social-demócrata o bé si és socialista.


preu de venta k socis:

B(x) = px+(-n)·x^{k}

d_{x}[B(x)] = q+( (-n)·k )·x^{k+(-1)} = 0

x = 1

p = kn


social-democracia:

impostos k socis:

B(x) = qx+(-n)·x^{(1/k)}

d_{x}[B(x)] = q+( (-n)/k )·x^{(1/k)+(-1)} = 0

x = 1

q = (n/k)

preu total:

p+q = kn+(n/k)

socialisme:

impostos k socis:

B(x) = (q/k)·x+(-n)·x^{(1/k)}

d_{x}[B(x)] = (q/k)+( (-n)/k )·x^{(1/k)+(-1)} = 0

x = 1

q = n

preu total:

p+q = kn+n = (k+1)·n


social-democracia:

exemples:

n = 0.10€

2n = 0.20€

(n/2) = 0.05€

2n+(n/2) = 0.25€

socialisme:

exemples:

n = 0.10€

2n = 0.20€

n = 0.10€

2n+n = 0.30€


social-democracia:

exemples:

n = 0.20€

2n = 0.40€

(n/2) = 0.10€

2n+(n/2) = 0.50€

socialisme:

exemples:

n = 0.20€

2n = 0.40€

n = 0.20€

2n+n = 0.60€


social-democracia:

exemples:

n = 0.50€

2n = 1€

(n/2) = 0.25€

2n+(n/2) = 1.25€

socialisme:

exemples:

n = 0.50€

2n = 1€

n = 0.50€

2n+n = 1.50€


social-democracia:

exemples:

n = 1.50€

3n = 4.50€

(n/3) = 0.50€

3n+(n/3) = 5€

socialisme:

exemples:

n = 1.50€

3n = 4.50€

n = 1.50€

3n+n = 6€


social-democracia:

impostos k = 2 & 20%·(p+q) = (n/2)

impostos k = 3 & 10%·(p+q) = (n/3)

socialisme:

impostos k = 2 & 33.3...%·(p+q) = n

impostos k = 3 & 25%·(p+q) = n

cuina

salsa rosa

piña amarilla

lechuga verde

zanahoria naranja

1 destructor


gambas rosa-blanco

manzana ocre-blanco

lechuga verde

zanahoria naranja

1 destructor


vinagre marrón

aceite verde

ajo picado amarillo

pimentón dulce rojo

pescado al horno

1 destructor

electrodébil

g_{x}(t) = e^{( Wq+Z(1+(-1)·q^{2}) )·it}·f_{x}(t)

g_{y}(t) = e^{( Wq+Z(1+(-1)·q^{2}) )·(-i)t}·f_{y}(t)

g_{x}(t)·g_{y}(t) = f_{x}(t)·f_{y}(t)


d_{t}[g_{x}(t)]·d_{t}[g_{y}(t)] = ...

... d_{t}[f_{x}(t)]·d_{t}[f_{y}(t)]+( Wq+Z(1+(-1)·q^{2}) )^{2}·f_{x}(t)·f_{y}(t) = 0

f_{x}(t) = e^{( Wq+Z(1+(-1)·q^{2}) )·it}

f_{y}(t) = e^{( Wq+Z(1+(-1)·q^{2}) )·it}

f_{x}(t) = e^{( Wq+Z(1+(-1)·q^{2}) )·(-i)t}

f_{y}(t) = e^{( Wq+Z(1+(-1)·q^{2}) )·(-i)t}


ondas radioactivas electro-nucleares:

Tauón <==> e^{W·it} & q = 1 & W > 0

Muón <==> e^{(-W)·it} & q = (-1) & W > 0

Neutrino <==> e^{Z·it} & q = 0 & Z > 0


ondas radioactivas gravito-nucleares:

anti-Tauón <==> e^{W·it} & q = (-1) & W < 0

anti-Muón <==> e^{(-W)·it} & q = 1 & W < 0

anti-Neutrino <==> e^{Z·it} & q = (-0) & Z < 0


anti-electrón <==> e^{q·it} & W = 1 & Z = 0

electrón <==> e^{(-q)·it} & W = 1 & Z = 0


gravitón <==> e^{q·it} & W = (-1) & Z = (-0)

anti-gravitón <==> e^{(-q)·it} & W = (-1) & Z = (-0)


( g_{x}(t) )^{2} = e^{( Wq+Z(1+(-1)·q^{2}) )·it}·( f_{x}(t) )^{2}

( g_{y}(t) )^{2} = e^{( Wq+Z(1+(-1)·q^{2}) )·(-i)t}·( f_{y}(t) )^{2}

( g_{x}(t)·g_{y}(t) )^{2} = ( f_{x}(t)·f_{y}(t) )^{2}


d_{t}[g_{x}(t)]·d_{t}[g_{y}(t)] = ...

... d_{t}[f_{x}(t)]·d_{t}[f_{y}(t)]+( Wq+Z(1+(-1)·q^{2}) )^{2}·( f_{x}(t)·f_{y}(t) )^{2} = 0

f_{x}(t) = ( ( Wq+Z(1+(-1)·q^{2}) )·it )^{(-1)}

f_{y}(t) = ( ( Wq+Z(1+(-1)·q^{2}) )·it )^{(-1)}

f_{x}(t) = ( ( Wq+Z(1+(-1)·q^{2}) )·(-i)t )^{(-1)}

f_{y}(t) = ( ( Wq+Z(1+(-1)·q^{2}) )·(-i)t )^{(-1)}

lunes, 10 de mayo de 2021

ecuacions en derivades parcials

u(x,y) = f(x)+g(y)

d_{x}[f(x)+g(y)] = d_{y}[f(x)+g(y)]

d_{x}[f(x)] = a & a = d_{y}[g(y)]

d_{x}[f(x)] = (-a) & (-a) = d_{y}[g(y)]


d_{x}[u(x,y)] = d_{y}[u(x,y)]

u(x,y) = ax+ay || u(x,y) = (-a)·x+(-a)·y

d_{x}[u(x,y)] = (-1)·d_{y}[u(x,y)]

u(x,y) = ax+(-a)·y || u(x,y) = (-a)·x+ay


d_{x}[u(x,y)] = i·d_{y}[u(x,y)]

u(x,y) = ai·x+ay || u(x,y) = (-a)i·x+(-a)y

u(x,y) = (-a)x+ai·y || u(x,y) = ax+(-a)i·y

d_{x}[u(x,y)] = (-i)·d_{y}[u(x,y)]

u(x,y) = (-a)i·x+ay || u(x,y) = ai·x+(-a)y

u(x,y) = (-a)·x+(-a)i·y || u(x,y) = ax+ai·y


e^{u(x,y)}( d_{x}[u(x,y)]+d_{y}[u(x,y)] ) = k^{2}·(x+y)

u(x,y) = ln( kx )+ln( ky ) || u(x,y) = ln( (-k)x )+ln( (-k)y )

e^{u(x,y)}( d_{x}[u(x,y)]+d_{y}[u(x,y)] ) = (-1)·k^{2}·(x+y)

u(x,y) = ln( kx )+ln( (-k)y ) || u(x,y) = ln( (-k)x )+ln( ky )

domingo, 9 de mayo de 2021

álgebra

ax^{n}+bx^{m} = c

x = c^{ ( 1/(log_{c}(a)+n) [+] (log_{c}(b)+m) ) }


ac^{ ( n/(log_{c}(a)+n) [+] (log_{c}(b)+m) ) }+...

bc^{ ( m/(log_{c}(a)+n) [+] (log_{c}(b)+m) ) } = ...

c^{ ( (log_{c}(a)+n)/(log_{c}(a)+n) [+] (log_{c}(b)+m) ) }+...

c^{ ( (log_{c}(b)+m)/(log_{c}(a)+n) [+] (log_{c}(b)+m) ) } = c


ax^{n}+bx^{m} = (x+(-1)·c^{ 1/( (log_{c}(a)+n) [+] (log_{c}(b)+m) ) })·...

(ax^{n+(-1)}+bx^{m+(-1)})+...

... c^{ 1/( (log_{c}(a)+n) [+] (log_{c}(b)+m) ) }(ax^{n+(-1)}+bx^{m+(-1)} = c

so y color

DO en escala n:

export-grafic-sound-sinh( grafic-sound[i][j][k] , nFFF )

sound[i][j][k]·sinh( i·nFFF·t )

export-grafic-sound-cosh( grafic-sound[i][j][k] , nFFF )

sound[i][j][k]·cosh( i·nFFF·t )


SI en escala n:

export-grafic-sound-sinh( grafic-sound[i][j][k] , n7FF )

export-grafic-sound-cosh( grafic-sound[i][j][k] , n7FF )

LA en escala n:

export-grafic-sound-sinh( grafic-sound[i][j][k] , n1FF )

export-grafic-sound-cosh( grafic-sound[i][j][k] , n1FF )