teorema:
[∃c][ c€K & ( (f(b)+(-1)·f(a))/(b+(-a)) ) = d_{x}[f(c)] ]
demostració:
Q = ( (f(b)+(-1)·f(a))/(b+(-a)) )
F(x) = (-1)f(x)+f(a)+Q( x+(-a) )
F(a) = 0 & F(b) = 0
d_{x}[F(x)] = (-1)·d_{x}[f(x)]+Q
d_{x}[f(c)] = Q
sábado, 7 de marzo de 2020
operador-médic de dents
constructor de dents
oooo oooo
oooo oooo
destructor de cáries
oooo oooo
oooo oooo
oooo oooo
oooo oooo
destructor de cáries
oooo oooo
oooo oooo
operador-médic: intestins
Davant constructor pene-o-chocho-intestí-prim.
Davant constructor cul-intestí-gros.
oo oo
oo oo
Davant destructor cáncer pene-o-chocho-intestí-prim.
Davant destructor cáncer cul-intestí-gros.
oo oo
oo oo
operador médico: corazón-y-hígado
Davant constructor cor: esquerra-dret.
Davant constructor fetge: dret-esquerra.
oo oo
oo oo
Davant destructor cáncer cor: esquerra-dret.
Davant destructor cáncer fetge: dret-esquerra.
oo oo
oo oo
operador médico cervell
Dreta-esquerra constructor cervell
oo oo
oo oo
Dreta-esquerra destructor cáncer cervell
oo oo
oo oo
oo oo
oo oo
Dreta-esquerra destructor cáncer cervell
oo oo
oo oo
operador médico pulmó
Dreta-esquerra constructor pulmó
oo oo
oo oo
Dreta-esquerra destructor cáncer pulmó
oo oo
oo oo
oo oo
oo oo
Dreta-esquerra destructor cáncer pulmó
oo oo
oo oo
credits de medicina teorôctetxtekiana
química-de-constructors-y-destructors: 40 credits
química-de-para-constructors-y-para-destructors: 40 credits
Genética-de-constructors-y-destructors: 40 credits
Psíquica: 20 credits
operadors-constructor-y-destructor: 40 credits
máster-práctic-en-operacions-star-trek: 40 credits
total: 220 credits
química-de-para-constructors-y-para-destructors: 40 credits
Genética-de-constructors-y-destructors: 40 credits
Psíquica: 20 credits
operadors-constructor-y-destructor: 40 credits
máster-práctic-en-operacions-star-trek: 40 credits
total: 220 credits
viernes, 6 de marzo de 2020
ley cristiana stronikiana de ukupación de casa
Al que te pida dale, si hace algo por ti o te da algo a cambio.
no robarás.
no se puede okupar sin pagar alquiler.
no robarás.
no se puede okupar sin pagar alquiler.
jueves, 5 de marzo de 2020
operador médico
operador médico constructor asterisco
{1,i,(-1),(-i)}
{k,(-j),(-k),j}
(-j) i k
(-1) 0 1
(-k) (-i) j
{1,i,(-1),(-i)}
{k,(-j),(-k),j}
(-j) i k
(-1) 0 1
(-k) (-i) j
operaciones médicas
operador star-trek-Pável-Checkov
operador constructor
oooo
oooo
operador destructor
oooo
oooo
operador constructor
oooo
oooo
operador destructor
oooo
oooo
operador constructor
oooo
oooo
operador destructor
oooo
oooo
operador constructor
oooo
oooo
operador destructor
oooo
oooo
miércoles, 4 de marzo de 2020
geofísica electro-exponencial
E(x,y,z) = qk·< ( (e^{ln(a)·x}+(-1))/x ) , ( (e^{ln(a)·y}+(-1))/y ) , ( (e^{ln(a)·z}+(-1))/z ) >
E(0,0,0) = qk·< ln(a) , ln(a) , ln(a) >
div[ E(x,y,z) ] = qk·( ...
... ( (e^{ln(a)·x}+(-1))/x )·ln(a)+( ln(a)/x )+(-1)·( (e^{ln(a)·x}+(-1))/x^{2} ) +..
... ( (e^{ln(a)·y}+(-1))/y )·ln(a)+( ln(a)/y )+(-1)·( (e^{ln(a)·y}+(-1))/y^{2} ) +...
... ( (e^{ln(a)·z}+(-1))/z )·ln(a)+( ln(a)/z )+(-1)·( (e^{ln(a)·z}+(-1))/z^{2} ) ...
... )
div[ E(0,0,0) ] = 3qk·( ln(a) )^{2}
E(0,0,0) = qk·< ln(a) , ln(a) , ln(a) >
div[ E(x,y,z) ] = qk·( ...
... ( (e^{ln(a)·x}+(-1))/x )·ln(a)+( ln(a)/x )+(-1)·( (e^{ln(a)·x}+(-1))/x^{2} ) +..
... ( (e^{ln(a)·y}+(-1))/y )·ln(a)+( ln(a)/y )+(-1)·( (e^{ln(a)·y}+(-1))/y^{2} ) +...
... ( (e^{ln(a)·z}+(-1))/z )·ln(a)+( ln(a)/z )+(-1)·( (e^{ln(a)·z}+(-1))/z^{2} ) ...
... )
div[ E(0,0,0) ] = 3qk·( ln(a) )^{2}
criteri de derivades
lim[h-->0][ (h/h)·( f(x+h)+(-1)f(x) )/( g(x+h)+(-1)g(x) ) ] = lim[h-->0][ ( f(x+h) )/( g(x+h) ) ] = ...
... ( f(x)/g(x) ) <==> ( f(x) = 0 & g(x) = 0 )
... ( f(x)/g(x) ) <==> ( f(x) = 0 & g(x) = 0 )
derivada de la exponencial
d_{x}[e^{x}] = lim[h-->0][ (1/h)( e^{x+h}+(-1)·e^{x} ) ]
d_{x}[e^{x}] = e^{x}·lim[h-->0][ (1/h)( e^{h}+(-1) ) ]
d_{x}[e^{x}] = e^{x}·lim[h-->0][ (1/h)( (1+h+(1/2)·h^{2}+...(1/n!)·h^{n}+...)+(-1) ) ]
d_{x}[e^{x}] = e^{x}
d_{x}[a^{x}] = lim[h-->0][ (1/h)( a^{x+h}+(-1)·a^{x} ) ]
d_{x}[a^{x}] = a^{x}·lim[h-->0][ (1/h)( a^{h}+(-1) ) ]
d_{x}[a^{x}] = a^{x}·lim[h-->0][ (1/h)( e^{ln(a)·h}+(-1) ) ]
d_{x}[a^{x}] = a^{x}·lim[h-->0][ (1/h)( (1+(ln(a)·h)+(1/2)·(ln(a)·h)^{2}+...(1/n!)·(ln(a)·h)^{n}+...)+(-1) ) ]
d_{x}[a^{x}] = a^{x}·ln(a)
d_{x}[e^{x}] = e^{x}·lim[h-->0][ (1/h)( e^{h}+(-1) ) ]
d_{x}[e^{x}] = e^{x}·lim[h-->0][ (1/h)( (1+h+(1/2)·h^{2}+...(1/n!)·h^{n}+...)+(-1) ) ]
d_{x}[e^{x}] = e^{x}
d_{x}[a^{x}] = lim[h-->0][ (1/h)( a^{x+h}+(-1)·a^{x} ) ]
d_{x}[a^{x}] = a^{x}·lim[h-->0][ (1/h)( a^{h}+(-1) ) ]
d_{x}[a^{x}] = a^{x}·lim[h-->0][ (1/h)( e^{ln(a)·h}+(-1) ) ]
d_{x}[a^{x}] = a^{x}·lim[h-->0][ (1/h)( (1+(ln(a)·h)+(1/2)·(ln(a)·h)^{2}+...(1/n!)·(ln(a)·h)^{n}+...)+(-1) ) ]
d_{x}[a^{x}] = a^{x}·ln(a)
derivada del logaritme
d_{x}[x] = 1
d_{x}[e^{ln(x)}] = 1
d_{ln(x)}[e^{ln(x)}]·d_{x}[ln(x)] = 1
e^{ln(x)}·d_{x}[ln(x)] = 1
x·d_{x}[ln(x)] = 1
d_{x}[ln(x)] = (1/x)
d_{x}[x+a] = 1
d_{x}[e^{ln(x+a)}] = 1
d_{ln(x+a)}[e^{ln(x+a)}]·d_{x}[ln(x+a)] = 1
e^{ln(x+a)}·d_{x}[ln(x+a)] = 1
(x+a)·d_{x}[ln(x+a)] = 1
d_{x}[ln(x+a)] = ( 1/(x+a) )
d_{x}[x^{n}] = nx^{(n+(-1))}
d_{x}[e^{ln(x^{n})}] = nx^{(n+(-1))}
d_{ln(x^{n})}[e^{ln(x^{n})}]·d_{x}[ln(x^{n})] = nx^{(n+(-1))}
e^{ln(x^{n})}·d_{x}[ln(x^{n})] = nx^{(n+(-1))}
x^{n}·d_{x}[ln(x^{n})] = nx^{(n+(-1))}
d_{x}[ln(x^{n})] = (1/x^{n})·nx^{(n+(-1))}
d_{x}[ln(x^{n})] = (n/x)
d_{x}[e^{ln(x)}] = 1
d_{ln(x)}[e^{ln(x)}]·d_{x}[ln(x)] = 1
e^{ln(x)}·d_{x}[ln(x)] = 1
x·d_{x}[ln(x)] = 1
d_{x}[ln(x)] = (1/x)
d_{x}[x+a] = 1
d_{x}[e^{ln(x+a)}] = 1
d_{ln(x+a)}[e^{ln(x+a)}]·d_{x}[ln(x+a)] = 1
e^{ln(x+a)}·d_{x}[ln(x+a)] = 1
(x+a)·d_{x}[ln(x+a)] = 1
d_{x}[ln(x+a)] = ( 1/(x+a) )
d_{x}[x^{n}] = nx^{(n+(-1))}
d_{x}[e^{ln(x^{n})}] = nx^{(n+(-1))}
d_{ln(x^{n})}[e^{ln(x^{n})}]·d_{x}[ln(x^{n})] = nx^{(n+(-1))}
e^{ln(x^{n})}·d_{x}[ln(x^{n})] = nx^{(n+(-1))}
x^{n}·d_{x}[ln(x^{n})] = nx^{(n+(-1))}
d_{x}[ln(x^{n})] = (1/x^{n})·nx^{(n+(-1))}
d_{x}[ln(x^{n})] = (n/x)
Suscribirse a:
Entradas (Atom)