jueves, 4 de agosto de 2022

comentari y probabilitat y álgebra de potch-hammer

Si tenéis CD's de música del Guery escritos con vuestra letra,

me podéis seguir,

porque Dios de o da testimonio de mi.

Si no tenéis CD's de música del Guery escritos con vuestra letra,

no me podéis seguir,

porque Dios ni de ni da testimonio de mi.


< Si x [< 2 ==> f(x) = 0 & ...

... Si 2 < x < 4 ==> f(x) = (1/2)·x+(-1) & ...

... Si 4 [< x ==> f(x) = 1 >

P( 2 < x < 3 ) = f(3)+(-1)·f(2) = ( (1/2)·3+(-1) )+(-0) = (1/2)

P( 3 < x < 4 ) = f(4)+(-1)·f(3) = 1+(-1)·( (1/2)·3+(-1) ) = 1+(-1)·(1/2) = (1/2)


< Si x [< 3 ==> f(x) = 0 & ...

... Si 3 < x < 6 ==> f(x) = (1/3)·x+(-1) & ...

... Si 6 [< x ==> f(x) = 1 >

P( 3 < x < 4 ) = f(4)+(-1)·f(3) = ( (1/3)·4+(-1) )+(-0) = (1/3)

P( 4 < x < 6 ) = f(6)+(-1)·f(4) = 1+(-1)·( (1/3)·4+(-1) ) = 1+(-1)·(1/3) = (2/3)

P( 3 < x < 5 ) = f(5)+(-1)·f(3) = ( (1/3)·5+(-1) )+(-0) = (2/3)

P( 5 < x < 6 ) = f(6)+(-1)·f(5) = 1+(-1)·( (1/3)·5+(-1) ) = 1+(-1)·(2/3) = (1/3)


triangle equiláter:

cercle circunscrit:

P(s/S) = (1/2)·(1/pi)·( 3·3^{(1/2)} )

cercle inscrit:

Q(s/S) = (1/2)·pi·( 1/( 3·3^{(1/2))}) )


x·(y^{n}+a) = c

y·(x^{n}+a) = c

x = c^{( 1/( 1+[...(a)...[n]...(a)...] ) )}

y = c^{( 1/( 1+[...(a)...[n]...(a)...] ) )}


x^{p}·(y^{n}+a) = c

y^{p}·(x^{n}+a) = c

x = c^{( 1/( p+[...(a)...[n]...(a)...] ) )}

y = c^{( 1/( p+[...(a)...[n]...(a)...] ) )}


x·(y^{n}+ax^{m}) = c

y·(x^{n}+ay^{m}) = c

x = c^{( 1/( (m+1)+[...(a)...[n+(-m)]...(a)...] ) )}

y = c^{( 1/( (m+1)+[...(a)...[n+(-m)]...(a)...] ) )}


x^{p}·(y^{n}+ax^{m}) = c

y^{p}·(x^{n}+ay^{m}) = c

x = c^{( 1/( (m+p)+[...(a)...[n+(-m)]...(a)...] ) )}

y = c^{( 1/( (m+p)+[...(a)...[n+(-m)]...(a)...] ) )}


Arte:

Si [...(a)...[p]...(a)...] = [...(a)...[p]...(a)...] ==> [...(a)...[p]...(a)...] = [...(a)...[1]...(a)...]·p

Arte:

(1/x^{p})·(y^{q}+a) = c

(1/y^{q})·(x^{p}+a) = c

x = c^{( 1/( (-p)+[...(a)...[p]...(a)...] ) )}

y = c^{( 1/( (-q)+[...(a)...[q]...(a)...] ) )}

Arte:

(1/x^{p})·(y^{q}+ax^{n}) = c

(1/y^{q})·(x^{p}+ay^{n}) = c

x = c^{( 1/( (n+(-p))+[...(a)...[p+(-n)]...(a)...] ) )}

y = c^{( 1/( (n+(-q))+[...(a)...[q+(-n)]...(a)...] ) )}


Distribucions:

( a € (0,1)_{R} & b € (0,1)_{R} & c € (0,1)_{R} )

Geométrica

k_{0} = 1

f(k) = (1+(-a))·(1/a)·a^{k}

Bi-Geométrica

k_{0} = 2

f(k) = (1+(-a))·(1+(-b))·( 1/(ab) )·sum[ i+j = k & ( i != 0 & j != 0 ) ][ a^{i}·b^{j} ]

S(oo) = ( 1/(1+(-a)) )·( 1/(1+(-b)) )+(-1)·( 1/(1+(-a)) )+(-1)·( 1/(1+(-b)) )+1

Tri-Geométrica:

k_{0} = 3

f(k) = (1+(-a))·(1+(-b))·(1+(-c))·( 1/(abc) )·...

... sum[ i+j+s = k & ( i != 0 & j != 0 & s != 0 ) ][ a^{i}·b^{j}·c^{s} ]

S(oo) = ( 1/(1+(-a)) )·( 1/(1+(-b)) )·( 1/(1+(-c)) )+...

... (-1)·(ab)·( 1/(1+(-a)) )·( 1/(1+(-b)) )+...

... (-1)·(bc)·( 1/(1+(-b)) )·( 1/(1+(-c)) )+...

... (-1)·(ca)·( 1/(1+(-c)) )·( 1/(1+(-a)) )+...

... (-1)·( 1/(1+(-a)) )+(-1)·( 1/(1+(-b)) )+(-1)·( 1/(1+(-c)) )+2


d_{x}[y] = y^{n}+f(x)

y^{(-1)·[...(f(x))...[n]...(f(x))...]+1} = ( (-1)·[...(f(x))...[n]...(f(x))...]+1 )·x

y(x) = ( ( (-1)·[...(f(x))...[n]...(f(x))...]+1 )·x )^{( 1/( (-1)·[...(f(x))...[n]...(f(x))...]+1 ) )}


d_{x}[y] = y^{n}+f(x) = u^{n} = d_{x}[u]

[An][ n = 1 ==> e^{x}·int[ f(x)·e^{(-x)} ]d[t] és isomorfa a e^{x} ]

[An][ n != 1 ==> ...

... ( ( (-1)·[...(f(x))...[n]...(f(x))...]+1 )·x )^{( 1/( (-1)·[...(f(x))...[n]...(f(x))...]+1 ) )} ...

...  és isomorfa a ( ((-n)+1)·x )^{( 1/((-n)+1) )} ...

... ]


mc·d_{t}[y] = (k/2)·y^{2}+E(t)

(2/k)·mc·d_{t}[y] = y^{2}+(2/k)·E(t)

y(t) = ...

... ( ...

... ( (-1)·[...((2/k)·E(t))...[2]...((2/k)·E(t))...]+1 )·(k/2)·(1/(mc))·t ...

... )^{( 1/( (-1)·[...((2/k)·E(t))...[2]...((2/k)·E(t))...]+1 ) )}


d_{xx}^{2}[y] = y^{n}+f(x)

y(x) = ...

... ( ...

... ( (-1)·[...(f(x))...[n]...(f(x))...]+1 )·...

... (1/2)^{(1/2)}·( 1/( 1+[...(f(x))...[n]...(f(x))...] ) )^{(1/2)}·x ...

... )^{( 2/( (-1)·[...(f(x))...[n]...(f(x))...]+1 ) )}


x^{n}+x^{m} = c^{k}

x = c^{( k/( m+[n+(-m)] ) )}

c^{( (km)/( m+[n+(-m)] ) )}·c^{( ( k·[n+(-m)] )/( m+[n+(-m)] ) )} = c^{k}


d_{x}[y] = e^{y}+f(x)

y(x) = ... 

... ]...(f(x))...] ln( (-1)·x )^{(-1)} [...(f(x))...[

d_{x}[y] = e^{y}+f(x) = e^{u} = d_{x}[u]

y(x) es isomorfa a u(x) = ln((-1)·x)^{(-1)}

d_{x}[ln( e^{]...(f(x))...] ln((-1)·x)^{(-1)} [...(f(x))...[} )] = ...

... (e^{]...(f(x))...] ln((-1)·x)^{(-1)} [...(f(x))...[}·((-1)·x)·((-1)·x)^{(-2)}...

... (1/e^{]...(f(x))...] ln((-1)·x)^{(-1)} [...(f(x))...[})


d_{xx}^{2}[y] = y^{n}+y^{m}

y(x) = ...

... ( ...

... ( (-1)·(m+[n+(-m)])+1 )·...

... (1/2)^{(1/2)}·( 1/( 1+(m+[n+(-m)]) ) )^{(1/2)}·x ...

... )^{( 2/( (-1)·(m+[n+(-m)])+1 )}


Teorema:

No se puede seguir a Dios y al dinero.

Demostración:

Hacer dinero es la ruina porque el dinero lleva cobertura de milagro,

que es el Espíritu Santo y se tiene que der o datchnar Espíritu Santo cunado se cobra.

Yo hago 655.36€ de dinero y gasto Espíritu Santo.

No puede ser tan caro un local o una casa,

si no se quiere perder mucha cobertura de milagro.


Anti-esclerosis-aguda:

Síntomas: radiación.

Peligro de muerte por combustión espontanea.

Medicación: Xeplion-Vega.

Anti-esclerosis-sub-aguda:

Síntomas: andar y nerviosismo vertebral.

Peligro de quedarte tetrapléjico o paralítico.

Medicación: Risperidona.

Baja laboral permanente,

porque se necesita poder andar,

para esquivar los peligros de muerte y de parálisis.


int[ d_{x}[f(x)] ]d[x] = int[d[f(x)]]·(d[x]/d[x]) = f(x)

d_{x}[ int[f(x)]d[x] ] = d[int[f(x)]]·(d[x]/d[x]) = f(x)


Una análisis de sangre se puede hacer,

cuando hay 256 bits o 512 bits de destructor en la sangre,

y con el pinchazo que es destructor por sacar sangre destructora es constructor,

y se va el destructor.

Una análisis de sangre no se puede hacer,

cuando hay 256 bits o 512 bits de constructor en la sangre,

y con el pinchazo que es destructor por sacar sangre constructora es destructor,

y se va el constructor.


Si eres diabético,

te puedes mirar el azúcar,

porque tienes destructor en sangre,

y no te puedes morir.

Si no eres diabético,

no te puedes mirar el azúcar,

porque tienes constructor en sangre,

y te puedes morir.

domingo, 31 de julio de 2022

super mario bros y topología y astro-física y occità y potch-hamer

[x-Mario-salto] = [x-Mario];

[y-Mario-salto] = [y-Mario];

cajas-positivo[x-Mario-salto+not(1)][y-Mario-salto+4] = 1;

cajas-positivo[x-Mario-salto][y-Mario-salto+4] = 1;

cajas-positivo[x-Mario-salto+1][y-Mario-salto+4] = 1;

while( cajas-positivo[x-Mario][y-Mario+1] == 0 )

{

Mario[x-Mario][y-Mario] = 0;

Mario[x-Mario][y-Mario+1] = 1;

[y-Mario] = [y-Mario]+1;

}

cajas-positivo[x-Mario-salto+not(1)][y-Mario-salto+4] = 0;

cajas-positivo[x-Mario-salto][y-Mario-salto+4] = 0;

cajas-positivo[x-Mario-salto+1][y-Mario-salto+4] = 0;

while( cajas-negativo[x-Mario][y-Mario+not(1)] == not(0) )

{

Mario[x-Mario][y-Mario] = 0;

Mario[x-Mario][y-Mario+not(1)] = 1;

[y-Mario] = [y-Mario]+not(1)

}


Relacions d'equivalencia algebraiques:

[n] = {< n,f(n) > : [Ef][Ex][ f(n) = n+x ] }

( < n,n > & x = 0 )

( < n,n+p > & x = p ) <==> ( < n+p,n > & x = (-p) )

Si ( ( < n,n+p > & x = p ) & ( < (n+p),(n+p)+q > & x = q ) ) ==> ( < n,n+(p+q) > & x = p+q )

[n] = {< n,f(n) > : [Ef][Ex][ f(n) = n·x ] }

( < n,n > & x = 1 )

( < n,n·p > & x = p ) <==> ( < n·p,n > & x = (1/p) )

Si ( ( < n,n·p > & x = p ) & ( < (n·p),(n·p)·q > & x = q ) ) ==> ( < n,n·(p·q) > & x = p·q )

Compactificació:

[i] = {i} [x] ( N [ || ] (-N) ) [<< A_{i}

[1] [<< A_{1}

...

[i] [<< A_{1} [ || ] ...(i)... [ || ] A_{i}

[i] = {i} [x] ( N [ || ] (1/N) ) [<< A_{i}

[1] [<< A_{1}

...

[i] [<< A_{1} [ || ] ...(i)... [ || ] A_{i}

Relació d'equivalencia de cicle:

[x] = {< x,f^{ok}(x) > : [En][Ax][ f^{on}(x) = x ] }

( < x,x > & k = n )

( < x,y > & k = p ) <==> ( < y,x > & k = (-p) )

Si ( ( < x,y > & k = p ) & ( < y,z > & k = q ) ) ==> ( < x,z > & k = p o q )

Compactificació:

[x_{i}] = {x_{i}} [x] {x_{1},...(n)...,x_{n}} [<< A_{i}

[x_{1}] [<< A_{1}

...

[x_{i}] [<< A_{1} [ || ] ...(i)... [ || ] A_{i}


Interior:

D [<< A

Adherencia interior:

C [&] ¬A != 0

Teorema:

Si [Ak][ D_{k} [<< D ] ==> ( D_{1} [ || ] ...(n)... [ || ] D_{n} ) [<< A

Si [Ak][ C_{k} >>] C ] ==> ( C_{1} [&] ...(n)... [&] C_{n} ) [&] ¬A != 0

Teorema:

Si [Ak][ D_{k} >>] D ] ==> ( D_{1} [&] ...(n)... [&] D_{n} ) [<< A

Si [Ak][ C_{k} [<< C ] ==> ( C_{1} [ || ] ...(n)... [ || ] C_{n} ) [&] ¬A != 0


Reactor:

L·d_{tt}^{2}[T(t)]+C·T(t) = R·A_{0}·e^{i·vt}

T(t) = ( 1/( C+(-L)·v^{2} ) )·R·A_{0}·e^{i·vt}

L·d_{tt}^{2}[T(t)]+(-1)·C·T(t) = R·A_{0}·e^{vt}

T(t) = ( 1/( (-C)·+L·v^{2} ) )·R·A_{0}·e^{vt}


Força logarítmica de la energía foscura:

R^{s}_{ijk} = (x_{s}/x_{k})·d_{ij}^{2}[x_{i}·x_{j}]

R_{ij}+m_{ij} = int[ (-1)·ln(x_{k}) ]d[x_{i}·x_{j}]

x_{s} = (-1) & x_{k} = x_{i}·x_{j}

R_{ij} = (-1)·x_{i}·x_{j}·ln(x_{i}·x_{j})

m_{ij} = x_{i}·x_{j}

Força exponencial de la energía foscura:

R^{s}_{ijk} = (x_{s}/x_{k})·d_{ij}^{2}[e^{(-1)·x_{i}·x_{j}}]

R_{ij}+m_{ij} = int[ (-1)·x_{k}·e^{(-1)·x_{k}} ]d[x_{i}·x_{j}]

x_{s} = x_{k} = x_{i}·x_{j}

R_{ij} = x_{i}·x_{j}·e^{(-1)·x_{i}·x_{j}}

m_{ij} = e^{(-1)·x_{i}·x_{j}}


R^{s}_{ijk} = (x_{s}/x_{k})·d_{ij}^{2}[x_{i}·x_{j}]

x_{s} = x_{k} = 1 & x_{i} = x_{j} = x(t)

Galaxia y forat negre de galaxia:

R_{ij}+m_{ij} = 2·(-i)·d_{t}[x(t)]^{2}

x(t) = e^{kt}

R_{ij}+m_{ij} = 2·(-i)·d_{t}[x(t)]

x(t) = ( 1/((-i)·t) )

Cuásar y forat negre de cuásar:

R_{ij}+m_{ij} = 2i·d_{t}[x(t)]^{2}

x(t) = e^{jt}

R_{ij}+m_{ij} = 2i·d_{t}[x(t)]

x(t) = ( 1/(it) )

El forat negre de cuásar té més energía que el forat negre de galaxia,

perque gira en el sentit contrari de l'anti-gravitació.

El forat negre de galaxia o cuásar és de dos portes que giren oposades.


Neishement y mort: d'una estrella y forat negre d'estrella:

R_{ij}+m_{ij} = 2·d_{t}[x(t)]^{2}

x(t) = e^{t}

R_{ij}+m_{ij} = 2·d_{t}[y(t)]^{2}

y(t) = e^{(-t)}

R_{ij}+m_{ij} = 2·d_{t}[x(t)]

y(t) = (1/(-t))


Cúmul y cuásar: regular y forat negre regular:

R_{ij}+m_{ij} = (-2)·d_{t}[x(t)]^{2}

x(t) = e^{it}

R_{ij}+m_{ij} = (-2)·d_{t}[y(t)]^{2}

y(t) = e^{(-i)·t}

R_{ij}+m_{ij} = (-2)·d_{t}[x(t)]

y(t) = (1/t)

Els cuásars regulars giren en sentit contrari de l'anti-gravitació.


Vos creéis que no se tiene poder ilimitado, con andar,

Vos creéis que se tiene poder ilimitado, sin andar.


E = {A: [EX][ A o Z+(-1)·( Z o A ) = X ] }

(A+B) o Z+(-1)·( Z o (A+B) ) = X+Y

(s·A) o Z+(-1)·( Z o (s·A) ) = s·X


Subespais vectorials producte:

E = {f(x): [EP(x)][ d_{x}[f(x)] = P(x) ] }

d_{x}[f(x) [o(x)o] g(x)] = P(x)·Q(x)

d_{x}[( f(x) )^{[o(x)o]s}] = ( P(x) )^{s}


E = {f(x): [EP(x)][ int[f(x)]d[x] = P(x) ] }

int[f(x)·g(x)]d[x] = P(x) [o(x)o] Q(x)

int[( f(x) )^{s}]d[x] = ( P(x) )^{[o(x)o]s}


E = {f(x): [EP(x)][ d_{x}[f(x)]·f(x) = P(x) ] }

d_{x}[f(x) [o(x)o] g(x)]·f(x)·g(x) = P(x)·Q(x)

d_{x}[( f(x) )^{[o(x)o]s}]·( f(x) )^{s} = ( P(x) )^{s}


E = {f(x): [EP(x)][ int[f(x)]d[x] [o(x)o] f(x) = P(x) ] }

int[f(x)·g(x)]d[x] [o(x)o] f(x) [o(x)o] g(x) = P(x) [o(x)o] Q(x)

int[( f(x) )^{s}]d[x] [o(x)o] ( f(x) )^{[o(x)o]s} = ( P(x) )^{[o(x)o]s}


F(x) = int[ G^{o(-1)}(0) ---> h(x) ][ ( g(x)/x ) ]d[x] ==> ...

... d_{x}[F(x)] = ( g(h(x))/h(x) )·d_{x}[h(x)]

int[ G^{o(-1)}(0) ---> h(x) ][ ( g(x)/x ) ]d[x] = ...

... G(h(x)) [o(x)o] ( (1/2)·( h(x) )^{2} )^{[o(x)o](-1)}

( (1/2)·x^{2} )^{[o(x)o](-1)} = ln(x)


Occità [o] Català

aguet [o] aquet

aguet-ça [o] aquet-ça

aguets [o] aquets

aguet-çes [o] aquet-çes


aguell [o] aquell

aguella [o] aquella

aguells [o] aquells

aguelles [o] aquelles


eth-eleth [o] el

tha-eleth [o] la

eths-eleth [o] els

thes-eleth [o] les


un-eleth [o] un

una-eleth [o] una

uns-eleth [o] uns

unes-eleth [o] unes


eth-eleth que camina-puá,

per tha-eleth tenebra,

no veu-de-puá a on va-de-puá.

tha-eleth que camina-puá,

per eth-eleth silenci,

no oeish-de-puá a on va-de-puá.


Nosautres parlems-de-puá,

de un-eleth camí que he-de-puá trobat,

que porta-puá cap a tha-eleth llibertat.

Vosautres parlez-de-puá,

de un-eleth camí que he-de-puá perdut,

que porta-puá cap a tha-eleth esclavitut.


parlû-puá

parles-puá

parla-puá

parlems-de-puá

parlez-de-puá

parlen-puá


Eth-eleth Generau s'ha-de-puá sumergit,

en eth-eleth occità.

Eth-eleth Generau s'ha-de-puá des-sumergit,

en eth-eleth català.


x·(x+y) = c

y·(y+x) = c

x = c^{( 1/( 2+[0] ) )}

y = c^{( 1/( 2+[0] ) )}


x·(x+(-y)) = c

y·(y+(-x)) = c

x = c^{( 1/( 2+]0[ ) )}

y = c^{( 1/( 2+]0[ ) )}


x^{2}·(x+3y) = c

y^{2}·(y+3x) = c

x = c^{( 1/( 3+[...(3)...[0]...(3)...] ) )}

y = c^{( 1/( 3+[...(3)...[0]...(3)...] ) )}


x^{2}·(x+(-3)·y) = c

y^{2}·((-y)+3x) = c

x = c^{( 1/( 3+[...(3)...[0]...(3)...] ) )}

y = (-1)·c^{( 1/( 3+[...(3)...[0]...(3)...] ) )}


x·(y+a) = c

y·(x+a) = c

x = c^{( 1/( 1+[...(a)...[1]...(a)...] ) )}

y = c^{( 1/( 1+[...(a)...[1]...(a)...] ) )}