f(k) = (x^{k}/k!)·e^{-x}
f(k) = k·(x^{k}/k!)·(1/x)·e^{-x}
f(k) = k(k+(-1))·(x^{k}/k!)·(1/x^{2})·e^{-x}
f(k) = k(k+(-1))·...(m)...·(k+(-m))·(x^{k}/k!)·(1/x^{m+1})·e^{-x}
f(k) = (x^{2k}/(2k)!)·(1/cosh(x))
f(k) = (x^{2k+1}/(2k+1)!)·(1/sinh(x))
f(k) = (2k)(x^{2k}/(2k)!)·(1/x)·(1/sinh(x))
f(k) = (2k+1)(x^{2k+1}/(2k+1)!)·(1/x)·(1/cosh(x))
viernes, 13 de septiembre de 2019
distribucions de probabilitat
f(k) = [ n // k ]·2^{(-n)}
f(0)+...+f(n) = ( [ n // 0 ]+...+[ n // n ] )·2^{(-n)}=2^{n}·2^{(-n)}=1
f(k) = [ n // k ]·p^{(n+(-k))}·(1+(-p))^{k}
f(0)+...+f(n) = ( [ n // 0 ]p^{n}+...+[ n // n ](1+(-p))^{n} )=( p+(1+(-p)) )^{n}=1
f(k) = (1/p^{n})·( p^{k}+(-1)·p^{(k+(-1))} )
f(0)+...+f(n) = ( (1/p^{n})·( ( (p^{n+1}+(-1))/(p+(-1)) )+(-1)·( (p^{n}+(-1))/(p+(-1)) ) )=...
...(1/p^{n})·p^{n}·( (p+(-1))/(p+(-1)) )=1
f(0)+...+f(n) = ( [ n // 0 ]+...+[ n // n ] )·2^{(-n)}=2^{n}·2^{(-n)}=1
f(k) = [ n // k ]·p^{(n+(-k))}·(1+(-p))^{k}
f(0)+...+f(n) = ( [ n // 0 ]p^{n}+...+[ n // n ](1+(-p))^{n} )=( p+(1+(-p)) )^{n}=1
f(k) = (1/p^{n})·( p^{k}+(-1)·p^{(k+(-1))} )
f(0)+...+f(n) = ( (1/p^{n})·( ( (p^{n+1}+(-1))/(p+(-1)) )+(-1)·( (p^{n}+(-1))/(p+(-1)) ) )=...
...(1/p^{n})·p^{n}·( (p+(-1))/(p+(-1)) )=1
jueves, 12 de septiembre de 2019
derivada imperial
d_{x}^{(1/m)}[x^{n}] = n^{(1/m)}·x^{( (n+(-1))/m )}
d_{x}^{(1/m)}[e^{x}] = e^{(1/m)x}
d_{t}^{(1/m)}[ d_{t}^{(1/m)}[x(t)]^{m} ] + ( a^{(2/m)}( x(t) )^{(1/m)} ) = 0 <==> x(t)=e^{at·i}
d_{x}^{(1/m)}[ f(x)+g(x) ] =[2/2^{m}]= d_{x}^{(1/m)}[f(x)] + d_{x}^{(1/m)}[g(x)]
d_{x}^{(1/m)}[ af(x) ] = a^{(1/m)}·d_{x}^{(1/m)}[f(x)]
d_{x}^{(1/m)}[ ax^{2}+bx ] =[2/2^{m}]= (2ax)^{(1/m)} + b^{(1/m)}
d_{x}^{(1/m)}[ ax^{3}+bx^{2}+cx ] =[3/3^{m}]= (3a)^{(1/m)}·x^{(2/m)}+(2bx)^{(1/m)}+c^{(1/m)}
d_{x}^{(1/m)}[e^{x}] = e^{(1/m)x}
d_{t}^{(1/m)}[ d_{t}^{(1/m)}[x(t)]^{m} ] + ( a^{(2/m)}( x(t) )^{(1/m)} ) = 0 <==> x(t)=e^{at·i}
d_{x}^{(1/m)}[ f(x)+g(x) ] =[2/2^{m}]= d_{x}^{(1/m)}[f(x)] + d_{x}^{(1/m)}[g(x)]
d_{x}^{(1/m)}[ af(x) ] = a^{(1/m)}·d_{x}^{(1/m)}[f(x)]
d_{x}^{(1/m)}[ ax^{2}+bx ] =[2/2^{m}]= (2ax)^{(1/m)} + b^{(1/m)}
d_{x}^{(1/m)}[ ax^{3}+bx^{2}+cx ] =[3/3^{m}]= (3a)^{(1/m)}·x^{(2/m)}+(2bx)^{(1/m)}+c^{(1/m)}
miércoles, 11 de septiembre de 2019
La Ley
Adorarás al señor tu Dios.
No dibujarás al señor tu Dios.
No tomarás el nombre del señor tu Dios.
No matarás.
No robarás: somos y tenemos propiedad privada.
No darás falso testimonio.
No cometerás adulterio.
Honrarás al padre y a la madre: no practicarás sexo con la familia.
No desearás nada que le pertenezca a otro: ni país de otro.
La lley
Adorarás al senyor ton Déu.
No dibusharás al senyor ton Déu.
No prendrás el nom del senyor ton Déu.
No matarás.
No robarás: som y tenim propietat privada.
No donarás fals testimoni.
No cometrás adulteri.
Honrarás al pare y a la mare: no practicarás sexe amb la familia.
No desitjarás res que li perteneishi a un altre: ni país d'un altre.
No dibusharás al senyor ton Déu.
No prendrás el nom del senyor ton Déu.
No matarás.
No robarás: som y tenim propietat privada.
No donarás fals testimoni.
No cometrás adulteri.
Honrarás al pare y a la mare: no practicarás sexe amb la familia.
No desitjarás res que li perteneishi a un altre: ni país d'un altre.
funció export-matrix-sound en assembler
export-matrix-sound-x( int principi , int final )
{
mov bx,principi
mov cx,[bx]
not cx
not cx
mov bx,final
mov dx,[bx]
not dx
not dx
xor ax,ax
int 0000 0101
}
export-matrix-sound-y( int principi , int final )
{
mov bx,principi
mov cx,[bx]
not cx
mov bx,final
mov dx,[bx]
not dx
sis ax,ax
int not(0000 0101)
}
def-int
{
int 0000 0101 reprodueix la matriu de la tarjeta de so des de cx fins a dx,
y se atura en ax!=0 pulsant una tecla.
int not(0000 0101) reprodueix la matriu de la tarjeta de so des de not(cx) fins a not(dx),
y se atura en ax!=not(0) pulsant una tecla.
}
{
mov bx,principi
mov cx,[bx]
not cx
not cx
mov bx,final
mov dx,[bx]
not dx
not dx
xor ax,ax
int 0000 0101
}
export-matrix-sound-y( int principi , int final )
{
mov bx,principi
mov cx,[bx]
not cx
mov bx,final
mov dx,[bx]
not dx
sis ax,ax
int not(0000 0101)
}
def-int
{
int 0000 0101 reprodueix la matriu de la tarjeta de so des de cx fins a dx,
y se atura en ax!=0 pulsant una tecla.
int not(0000 0101) reprodueix la matriu de la tarjeta de so des de not(cx) fins a not(dx),
y se atura en ax!=not(0) pulsant una tecla.
}
martes, 10 de septiembre de 2019
llum y so
cos(x)=(1/2)(e^{xi}+e^{(-x)i})
sin(x)=(1/2i)(e^{xi}+(-1)e^{(-x)i})
cosh(x)=(1/2i)(e^{x}+e^{(-x)})
sinh(x)=(1/2i)(e^{x}+(-1)e^{(-x)})
cos(0)=1
cosh(0·i)=1
sin(0)=0
sinh(0·i)=0
cos(pi/2)=0
cosh((pi/2)·i)=0
sin(pi/2)=1
sinh((pi/2)·i)=1
cos(pi)=(-1)
cosh(pi·i)=(-1)
sin(pi)=0
sinh(pi·i)=0
cos(3pi/2)=0
cosh((3pi/2)·i)=0
sin(3pi/2)=(-1)
sinh((3pi/2)·i)=(-1)
cos(2pi)=1
cosh(2pi·i)=1
sin(2pi)=0
sinh(2pi·i)=0
sin(x)=(1/2i)(e^{xi}+(-1)e^{(-x)i})
cosh(x)=(1/2i)(e^{x}+e^{(-x)})
sinh(x)=(1/2i)(e^{x}+(-1)e^{(-x)})
cos(0)=1
cosh(0·i)=1
sin(0)=0
sinh(0·i)=0
cos(pi/2)=0
cosh((pi/2)·i)=0
sin(pi/2)=1
sinh((pi/2)·i)=1
cos(pi)=(-1)
cosh(pi·i)=(-1)
sin(pi)=0
sinh(pi·i)=0
cos(3pi/2)=0
cosh((3pi/2)·i)=0
sin(3pi/2)=(-1)
sinh((3pi/2)·i)=(-1)
cos(2pi)=1
cosh(2pi·i)=1
sin(2pi)=0
sinh(2pi·i)=0
colors
blanc dual negre
vermell dual verd
blau dual taronja
groc dual violeta
ocre dual rosa
blau cel dual marrón
granate dual verde clar
vermell dual verd
blau dual taronja
groc dual violeta
ocre dual rosa
blau cel dual marrón
granate dual verde clar
Lógica de dret constitucional
afirmació:
si plou aleshores em mullû de la pluja perque no portû paraigües.
negació:
plou y no em mullû de la pluja encara que potser no portû paraigües.
afirmació:
si A(x) aleshores B(x) perque no C(x).
( ( A(x) ==> B(x) ) <== ¬C(x) ) & ¬C(x).
negació:
A(x) y no B(x) encara que potser no C(x).
( ( A(x) & ¬B(x) ) & ¬C(x) ) or C(x).
si plou aleshores em mullû de la pluja perque no portû paraigües.
negació:
plou y no em mullû de la pluja encara que potser no portû paraigües.
afirmació:
si A(x) aleshores B(x) perque no C(x).
( ( A(x) ==> B(x) ) <== ¬C(x) ) & ¬C(x).
negació:
A(x) y no B(x) encara que potser no C(x).
( ( A(x) & ¬B(x) ) & ¬C(x) ) or C(x).
lunes, 9 de septiembre de 2019
conjugeited eit
present
calculeitu <==> calculû <==> calculû-tek <==> calculo <==> calculo <==> calculuactu
calculeites <==> calcules <==> calcules-tek <==> calculas <==> calcúlati <==> calculuactes
calculeita <==> calcula <==> calcula-tek <==> calcula <==> calcula <==> calculuacta
calculeitems<==>calculem<==>calculemek<==>calculamos<==>calculamoti<==>calculuactems
calculeiteus <==> calculeu <==> calculeuek <==> calculáis <==> calculáiti <==> calculuacteus
calculeiten <==> calculen <==> calculen-tek <==> calculan <==> calculan <==> calculuactent
calculeitu <==> calculû <==> calculû-tek <==> calculo <==> calculo <==> calculuactu
calculeites <==> calcules <==> calcules-tek <==> calculas <==> calcúlati <==> calculuactes
calculeita <==> calcula <==> calcula-tek <==> calcula <==> calcula <==> calculuacta
calculeitems<==>calculem<==>calculemek<==>calculamos<==>calculamoti<==>calculuactems
calculeiteus <==> calculeu <==> calculeuek <==> calculáis <==> calculáiti <==> calculuacteus
calculeiten <==> calculen <==> calculen-tek <==> calculan <==> calculan <==> calculuactent
domingo, 8 de septiembre de 2019
grafic M
M-Minuscula( int n-x , int n-y , int x , int y )
{
for( k=1 ; k [< n-x ; k++ )
{
m-k = k;
put-pixel-color-x( color , x+k , y+(m-k) )
}
for( k=(-1) ; k >] not(n-x) ; k--)
{
m-k = not(k);
put-pixel-color-y( color , x+(n-x+not(k)) , y+(n-x+not(m-k)) )
}
for( k=(-1) ; k >] n-y ; k-- )
{
m-k = not(k);
put-pixel-color-x( color , x+k , y+(m-k) )
}
for( k=1 ; k [< not(n-y) ; k++ )
{
m-k = k;
put-pixel-color-y( color , x+(n-y+not(k)) , y+(n-y+not(m-k)) )
}
}
M-Mayuscula( int n-x , int n-y , int x , int y )
{
for( k=1 ; k [< n-x ; k++ )
{
m-k = k;
put-pixel-color-x( color , x+(m-k) , y+k )
}
for( k=(-1) ; k >] not(n-x) ; k--)
{
m-x = n-x;
put-pixel-color-y( color , x+(m-x) , y+((m-x)+k) )
}
for( k=(-1) ; k >] n-y ; k-- )
{
m-k = not(k);
put-pixel-color-x( color , x+not(m-k) , y+not(k) )
}
for( k=1 ; k [< not(n-y) ; k++ )
{
m-y = not(n-y);
put-pixel-color-y( color , x+not(m-y) , y+(not(m-y)+not(k)) )
}
}
{
for( k=1 ; k [< n-x ; k++ )
{
m-k = k;
put-pixel-color-x( color , x+k , y+(m-k) )
}
for( k=(-1) ; k >] not(n-x) ; k--)
{
m-k = not(k);
put-pixel-color-y( color , x+(n-x+not(k)) , y+(n-x+not(m-k)) )
}
for( k=(-1) ; k >] n-y ; k-- )
{
m-k = not(k);
put-pixel-color-x( color , x+k , y+(m-k) )
}
for( k=1 ; k [< not(n-y) ; k++ )
{
m-k = k;
put-pixel-color-y( color , x+(n-y+not(k)) , y+(n-y+not(m-k)) )
}
}
M-Mayuscula( int n-x , int n-y , int x , int y )
{
for( k=1 ; k [< n-x ; k++ )
{
m-k = k;
put-pixel-color-x( color , x+(m-k) , y+k )
}
for( k=(-1) ; k >] not(n-x) ; k--)
{
m-x = n-x;
put-pixel-color-y( color , x+(m-x) , y+((m-x)+k) )
}
for( k=(-1) ; k >] n-y ; k-- )
{
m-k = not(k);
put-pixel-color-x( color , x+not(m-k) , y+not(k) )
}
for( k=1 ; k [< not(n-y) ; k++ )
{
m-y = not(n-y);
put-pixel-color-y( color , x+not(m-y) , y+(not(m-y)+not(k)) )
}
}
caixa rectangle
put-pixel-color-x( color , x-m , y-m+a )
for-racional( k=1 ; k [< b ; k++ )
{
put-pixel-color-x( color , x-m+k , y-m+a )
}
for-racional( k=(-1) ; k >] not(b) ; k-- )
{
put-pixel-color-y(color , x-m+k , y-m+a )
}
put-pixel-color-y( color , x-m , y-m+not(a) )
for( k=1 ; k [< b ; k++ )
{
put-pixel-color-x( color , x-m+k , y-m+not(a) )
}
for( k=(-1) ; k >] not(b) ; k-- )
{
put-pixel-color-y( color , x-m+k , y-m+not(a) )
}
put-pixel-color-x( color , x-m+b , y-m )
for( k=1 ; k [< a ; k++ )
{
put-pixel-color-x( color , x-m+b , y-m+k )
}
for( k=(-1) ; k >] not(a) ; k-- )
{
put-pixel-color-y( color , x-m+b , y-m+k )
}
put-pixel-color-y( color , x-m+not(b) , y-m )
for( k=1 ; k [< a ; k++ )
{
put-pixel-color-x( color , x-m+not(b) , y-m+k )
}
for( k=(-1) ; k >] not(a) ; k-- )
{
put-pixel-color-y( color , x-m+not(b) , y-m+k )
}
for-racional( k=1 ; k [< b ; k++ )
{
put-pixel-color-x( color , x-m+k , y-m+a )
}
for-racional( k=(-1) ; k >] not(b) ; k-- )
{
put-pixel-color-y(color , x-m+k , y-m+a )
}
put-pixel-color-y( color , x-m , y-m+not(a) )
for( k=1 ; k [< b ; k++ )
{
put-pixel-color-x( color , x-m+k , y-m+not(a) )
}
for( k=(-1) ; k >] not(b) ; k-- )
{
put-pixel-color-y( color , x-m+k , y-m+not(a) )
}
put-pixel-color-x( color , x-m+b , y-m )
for( k=1 ; k [< a ; k++ )
{
put-pixel-color-x( color , x-m+b , y-m+k )
}
for( k=(-1) ; k >] not(a) ; k-- )
{
put-pixel-color-y( color , x-m+b , y-m+k )
}
put-pixel-color-y( color , x-m+not(b) , y-m )
for( k=1 ; k [< a ; k++ )
{
put-pixel-color-x( color , x-m+not(b) , y-m+k )
}
for( k=(-1) ; k >] not(a) ; k-- )
{
put-pixel-color-y( color , x-m+not(b) , y-m+k )
}
ps-estructure de politja
\begin{ps-estructure}
\case{(-1)}
{
\caixa{not(x-m),y-m}{m_{1}}
\corda{0+(-r),y}{not(x-m),y-m}
\vector-vertical-negatiu{not(x-m),y}{q_{1}·g}
\vector-vertical-positiu{not(x-m),y}{T_{1}}
}
\case{not(0)}
{
\semi-cercle-negatiu{not(not(0)),y}{r}
\vector-vertical-negatiu{not(not(0)),y}{q_{0}·g}
}
\case{0}
{
\semi-cercle-positiu{0,y}{r}
\vector-vertical-positiu{0,y}{F_{0}}
}
\case{1}
{
\caixa{x-m,y-m}{m_{2}}
\corda{0+r,y}{x-m,y-m}
\vector-vertical-negatiu{x-m,y}{q_{2}·g}
\vector-vertical-positiu{x-m,y}{T_{2}}
}
\end{ps-estructure}
\case{(-1)}
{
\caixa{not(x-m),y-m}{m_{1}}
\corda{0+(-r),y}{not(x-m),y-m}
\vector-vertical-negatiu{not(x-m),y}{q_{1}·g}
\vector-vertical-positiu{not(x-m),y}{T_{1}}
}
\case{not(0)}
{
\semi-cercle-negatiu{not(not(0)),y}{r}
\vector-vertical-negatiu{not(not(0)),y}{q_{0}·g}
}
\case{0}
{
\semi-cercle-positiu{0,y}{r}
\vector-vertical-positiu{0,y}{F_{0}}
}
\case{1}
{
\caixa{x-m,y-m}{m_{2}}
\corda{0+r,y}{x-m,y-m}
\vector-vertical-negatiu{x-m,y}{q_{2}·g}
\vector-vertical-positiu{x-m,y}{T_{2}}
}
\end{ps-estructure}
tex print-cursive
n-x=1;
k=1;
while( text-x[1] == [ \cursive{ ] ; text-x[k] != [ } ] ; k++ )
{
print-tex-positiu(text-y[k],\cursive);
n-x++;
}
k=(-1);
while( text-y[(-1)] == [ } ] ; text-y[k] != [ \cursive{ ] ; k-- )
{
print-tex-negatiu(text-y[k],\cursive);
}
avanç-text-positiu(n-x);
k=1;
while( text-x[1] == [ \dual-cursive{ ] ; text-x[k] != [ } ] ; k++ )
{
print-tex-positiu(text-y[k],\dual-cursive);
}
n-y=(-1);
k=(-1);
while( text-y[(-1)] == [ } ] ; text-y[k] != [ \dual-cursive{ ] ; k-- )
{
print-tex-negatiu(text-y[k],\dual-cursive);
n-y--;
}
avanç-text-negatiu(n-y);
Suscribirse a:
Entradas (Atom)