c_{x} = meridià.
c_{y} = paralel.
c_{x} = 0 <==> hora 12 del mitx-dia.
c_{y} = 0 <==> ( pol para huracà & ecuador para huracà polar ).
Front fred ciclónic:
f(x) = c_{x}+(P/mg)·pi·R^{2}·cos(d_{t}[s(t)]·t)
f(y) = c_{y}+(P/mg)·pi·R^{2}·sin(d_{t}[s(t)]·t)
g(x) = c_{x}+(P/mg)·pi·R^{2}·(-1)·cos(d_{t}[s(t)]·t)
g(y) = c_{y}+(P/mg)·pi·R^{2}·(-1)·sin(d_{t}[s(t)]·t)
Front càlid ciclónic:
f(x) = c_{x}+(P/mg)·pi·R^{2}·(-1)·sin(d_{t}[s(t)]·t)
f(y) = c_{y}+(P/mg)·pi·R^{2}·cos(d_{t}[s(t)]·t)
g(x) = c_{x}+(P/mg)·pi·R^{2}·sin(d_{t}[s(t)]·t)
g(y) = c_{y}+(P/mg)·pi·R^{2}·(-1)·cos(d_{t}[s(t)]·t)
Front fred anti-ciclónic:
f(x) = c_{x}+(P/mg)·pi·R^{2}·cos((-1)·d_{t}[s(t)]·t)
f(y) = c_{y}+(P/mg)·pi·R^{2}·sin((-1)·d_{t}[s(t)]·t)
g(x) = c_{x}+(P/mg)·pi·R^{2}·(-1)·cos((-1)·d_{t}[s(t)]·t)
g(y) = c_{y}+(P/mg)·pi·R^{2}·(-1)·sin((-1)·d_{t}[s(t)]·t)
Front càlid anti-ciclónic:
f(x) = c_{x}+(P/mg)·pi·R^{2}·sin((-1)·d_{t}[s(t)]·t)
f(y) = c_{y}+(P/mg)·pi·R^{2}·(-1)·cos((-1)·d_{t}[s(t)]·t)
g(x) = c_{x}+(P/mg)·pi·R^{2}·(-1)·sin((-1)·d_{t}[s(t)]·t)
g(y) = c_{y}+(P/mg)·pi·R^{2}·cos((-1)·d_{t}[s(t)]·t)
Ciclónic:
front-fred [o] front-càlid = ( c_{x} )^{2}+( c_{y} )^{2} = B^{2}
Anti-Ciclónic:
front-fred [o] front-càlid = ( c_{x} )^{2}+( c_{y} )^{2} = A^{2}