sábado, 11 de enero de 2020

números fraccionaris binaris

(0.01)_{b} = (01/100)_{b} = (1/4)
(0.10)_{b} = (10/100)_{b} = (2/4) = (1/2)
(0.11)_{b} = (11/100)_{b} = (3/4)


(0.001)_{b} = (001/1000)_{b} = (1/8)
(0.010)_{b} = (010/1000)_{b} = (2/8) = (1/4)
(0.011)_{b} = (011/1000)_{b} = (3/8)
(0.100)_{b} = (100/1000)_{b} = (4/8) = (1/2)
(0.101)_{b} = (101/1000)_{b} = (5/8)
(0.110)_{b} = (011/1000)_{b} = (6/8) = (3/4)
(0.111)_{b} = (111/1000)_{b} = (7/8)


(100)_{b}·x+(-1)·x=(11)_{b}·x
(0.01...)_{b} = (1/3)
(0.10...)_{b} = (2/3)
(0.11...)_{b} = (3/3)


(1000)_{b}·x+(-1)·x=(111)_{b}·x
(0.001...)_{b} = (1/7)
(0.010...)_{b} = (2/7)
(0.011...)_{b} = (3/7)
(0.100...)_{b} = (4/7)
(0.101...)_{b} = (5/7)
(0.110...)_{b} = (6/7)
(0.111...)_{b} = (7/7)


(0.0011...)_{b} = (3/15) = (1/5)
(0.0110...)_{b} = (6/15) = (2/5)
(0.1001...)_{b} = (9/15) = (3/5)
(0.1100...)_{b} = (12/15) = (4/5)
(0.1111...)_{b} = (15/15) = (5/5)


(0.000111...)_{b} = (7/63) = (1/9)
(0.001110...)_{b} = (14/63) = (2/9)
(0.010101...)_{b} = (21/63) = (3/9) = (1/3)
(0.011100...)_{b} = (28/63) = (4/9)
(0.100011...)_{b} = (35/63) = (5/9)
(0.101010...)_{b} = (42/63) = (6/9) = (2/3)
(0.110001...)_{b} = (49/63) = (7/9)
(0.111000...)_{b} = (56/63) = (8/9)
(0.111111...)_{b} = (63/63) = (9/9)


(0.1)_{b}·(0.0011...)_{b} = (1/10)
(0.1)_{b}·(0.0110...)_{b} = (2/10)
(0.1)_{b}·(0.1001...)_{b} = (3/10)
(0.1)_{b}·(0.1100...)_{b} = (4/10)
(0.1)_{b}·(0.1111...)_{b} = (5/10) = (1/2)
(0.1)_{b}·(1.0011...)_{b} = (6/10)
(0.1)_{b}·(1.0110...)_{b} = (7/10)
(0.1)_{b}·(1.1001...)_{b} = (8/10)
(0.1)_{b}·(1.1100...)_{b} = (9/10)
(0.1)_{b}·(1.1111...)_{b} = (10/10)


(1/10)+1 = (0.1)_{b}·(10.0011...)_{b}
(1/10)+2 = (0.1)_{b}·(100.0011...)_{b}
(1/10)+3 = (0.1)_{b}·(110.0011...)_{b}
(1/10)+4 = (0.1)_{b}·(1000.0011...)_{b}


1+(-1)·(1/10) = (0.1)_{b}·(01.1100...)_{b}
2+(-1)·(1/10) = (0.1)_{b}·(011.1100...)_{b}
3+(-1)·(1/10) = (0.1)_{b}·(101.1100...)_{b}
4+(-1)·(1/10) = (0.1)_{b}·(0111.1100...)_{b}


(0.1)_{b}·(0.01...)_{b} = (1/6)
(0.1)_{b}·(0.10...)_{b} = (2/6) = (1/3)
(0.1)_{b}·(0.11...)_{b} = (3/6) = (1/2)
(0.1)_{b}·(1.01...)_{b} = (4/6) = (2/3)
(0.1)_{b}·(1.10...)_{b} = (5/6)
(0.1)_{b}·(1.11...)_{b} = (6/6)


(0.0001011101...)_{b} = (93/1023) = (1/11)

assembler x=x

x=x
{
mov bx,x
mov ax,[bx]
mov [bx],ax
}


x=not(x)
{
mov bx,x
mov ax,[bx]
not ax
mov [bx],ax
}


x=not(not(x))
{
mov bx,x
mov ax,[bx]
not ax
not ax
mov [bx],ax
}

grafic m minuscula estrident

M-Minuscula( int n-x , int n-y , int x , int y )
{


for( k=1 ; k [< (n-x)  ; k++ )
{
m-k = k;
m-x = n-x;
x = x;
y = y;
put-pixel-color-x( color , x+( (n-x)+not(m-k) ) , y+( (m-x)+not(k) ) )
}
for( k=(-1) ; k >] not(n-x)  ; k-- )
{
m-k = not(k);
m-x = not(n-x);
x = not(x);
y = not(y);
put-pixel-color-y( color , not(x)+( not(n-x)+(m-k) ) , not(y)+( not(m-x)+k ) )
}


for( k=1 ; k [< (n-y)  ; k++ )
{
m-k = k;
m-y = n-y;
x = x;
y = y;
put-pixel-color-x( color , x+( (n-x)+(m-k) ) , y+( (m-y)+not(k) ) )
}
for( k=(-1) ; k >] not(n-y)  ; k-- )
{
m-k = not(k);
m-y = not(n-y);
x = not(x);
y = not(y);
put-pixel-color-y( color , not(x)+( not(n-x)+not(m-k) ) , not(y)+( not(m-y)+k ) )
}


}

funció botó circular y coordenades polars inicialització

for( radi = 1 ; radi [< m ; radi++ )
{
for( angle = 1 ; angle [< 360 ; angle++ )
{
radi-x = radi;
radi-y = radi;
z = y;
angle = angle;
botó-x-positiu[angle][radi-x] = x + radi·cos(angle);
botó-y-positiu[angle][radi-y] = z + radi·sin(angle);
botó-de-circunferencia-positiu[angle][radi] = angle·radi;
botó-de-sector-circular-positiu[angle][radi] = (1/2)·angle·(radi·radi);
}
}


for( radi = not(1) ; radi >] not(m) ; radi-- )
{
for( angle = not(1) ; angle >] not(360) ; angle-- )
{
radi-x = not(radi);
radi-y = not(radi);
z = not(y);
angle = not(angle);
botó-x-negatiu[not(angle)][radi-x] = not(x) + not(radi)·cos(not(angle));
botó-y-negatiu[not(angle)][radi-y] = not(z) + not(radi)·sin(not(angle));
botó-de-circunferencia-negatiu[not(angle)][not(radi)] = not(angle)·not(radi);
botó-de-sector-circular-negatiu[not(angle)][not(radi)] = (1/2)·not(angle)·(not(radi)·not(radi));
}
}

viernes, 10 de enero de 2020

mecànica de colisió de una partícula amb un extrem de una barra

txoc de una partícula en un extrem de una barra a velocitat constant V:
m_{1} = k·m_{2}


m_{1}·d_{t}[x(t_{0})] = m_{1}·d_{t}[x(t_{1})] + m_{2}·d_{t}[s(t_{2})]·R


m_{1}·V = m_{1}·d_{t}[x(t_{1})] + m_{2}·d_{t}[s(t_{2})]·R


txoc inelástic:
si d_{t}[x(t_{1})] = d_{t}[s(t_{2})]·R ==>


d_{t}[x(t_{1})] = V·( m_{1}/(m_{1}+m_{2}) )


d_{t}[x(t_{1})] = V·( k/(k+1) )
d_{t}[s(t_{2})] = (V/R)·(k/(k+1) )


txoc elástic


m_{1}·V = m_{1}·(-V) + m_{2}·d_{t}[s(t_{2})]·R


d_{t}[s(t_{2})] =  (V/R)·(m_{1}/m_{2})
d_{t}[s(t_{2})] =  (V/R)·k

suma directa y números

3 = x^{2}+y^{2}
3 = (1/2)·( x[+]y )^{2}
6 = ( x[+]y )^{2}
6^{(1/2)} = x[+]y


x = ( 6^{(1/2)}/2 )
y = ( 6^{(1/2)}/2 )


5 = x^{2}+y^{2}
5 = (1/2)·( x[+]y )^{2}
10 = ( x[+]y )^{2}
10^{(1/2)} = x[+]y


x = ( 10^{(1/2)}/2 )
y = ( 10^{(1/2)}/2 )


2 = x^{2}+y^{2}
2 = (1/2)·( x[+]y )^{2}
4 = ( x[+]y )^{2}
4^{(1/2)} = x[+]y
2 = x[+]y


x = 1
y = 1

suma directa y ecuacions cuártiques


x^{4}+y^{4} = k
(1/8)·( x[+]y )^{4} = k
( x[+]y )^{4} = 8k
( x[+]y ) = 8^{(1/4)}·k^{(1/4)}


x = (4/8^{(3/4)})·k^{(1/4)}
y = (4/8^{(3/4)})·k^{(1/4)}


x^{4}+y^{4} = (x+y)
(1/8)·( x[+]y )^{4} = (x+y)
( x[+]y )^{4} = 8·(x+y)
( x[+]y ) = 8^{(1/4)}·(x+y)^{(1/4)}


x = 1
y = 1


x^{4}+y^{4} = (x+y)^{3}
(1/8)·( x[+]y )^{4} = (x+y)^{3}
( x[+]y )^{4} = 8·(x+y)^{3}
( x[+]y ) = 8^{(1/4)}·(x+y)^{(3/4)}


x = 4
y = 4

suma directa y ecuacions cúbiques


x^{3}+y^{3} = k
(1/4)·( x[+]y )^{3} = k
( x[+]y )^{3} = 4k
( x[+]y ) = 4^{(1/3)}·k^{(1/3)}


x = (2/4^{(2/3)})·k^{(1/3)}
y = (2/4^{(2/3)})·k^{(1/3)}


x^{3}+y^{3} = (x+y)
(1/4)·( x[+]y )^{3} = (x+y)
( x[+]y )^{3} = 4·(x+y)^{(1/3)}
( x[+]y ) = 4^{(1/3)}·(x+y)^{(1/3)}


x = 1
y = 1


x^{3}+y^{3} = (x+y)^{2}
(1/4)·( x[+]y )^{3} = (x+y)^{2}
( x[+]y )^{3} = 4·(x+y)^{(2/3)}
( x[+]y ) = 4^{(1/3)}·(x+y)^{(2/3)}


x = 2
y = 2

suma directa y ecuacions cuadrátiques


x^{2}+y^{2} = k
(1/2)·( x[+]y )^{2} = k
( x[+]y )^{2} = 2k
( x[+]y ) = 2^{(1/2)}·k^{(1/2)}


x = (1/2^{(1/2)})·k^{(1/2)}
y = (1/2^{(1/2)})·k^{(1/2)}


x^{2}+y^{2} = (x+y)
(1/2)·( x[+]y )^{2} = (x+y)
( x[+]y )^{2} = 2·(x+y)
( x[+]y ) = 2^{(1/2)}·(x+y)^{(1/2)}


x = 1
y = 1

jueves, 9 de enero de 2020

suma directa y sistema cúbic


x^{3} + y^{3} = x + p
x^{3} + y^{3} = y + q
x + y = m


(1/4)·( x [+] y )^{3} = x + p
(1/4)·( x [+] y )^{3} = y + q
x + y = m


(1/4)·( (m/2) [+] (m/2) )^{3} = x + p
(1/4)·( (m/2) [+] (m/2) )^{3} = y + q
x + y = m


(m^{3}/4) = x + p
(m^{3}/4) = y + q
x + y = m


(m^{3}/4) + (-p) = x
(m^{3}/4) + (-q) = y
x + y = m


(m^{3}/2) = m + (p[+]q)
m^{3} = 2m + 2·(p[+]q)


m = ( (1/2)( 2(p[+]q) + ( 4(p[+]q)^{2}+(32/27) )^{(1/2)} ) )^{(1/3)} + ...
... ( (1/2)( 2(p[+]q) + (-1)( 4(p[+]q)^{2}+(32/27) )^{(1/2)} ) )^{(1/3)}


m^{3} = 2·(p[+]q) + 2m


(1/32)·(m^{3})^{3} = ...
... (1/32)·( 8·(p[+]q)^{3}+3·( 4·(p[+]q)^{2}·(2m) )+3·( 2·(p[+]q)·(4m^{2}) )+8m^{3} )


(-1)(3/16)·(p[+]q)·(m^{3})^{2} = ...
... (-1)(3/16)·(p[+]q)·( 4·(p[+]q)^{2}+2·2·(p[+]q)·(2m)+4m^{2} )


(3/4)·(1/2)·(p[+]q)^{2}·(m^{3}) = ...
... (3/8)·(p[+]q)^{2}·( 2·(p[+]q)+(2m) )

miércoles, 8 de enero de 2020

suma directa y sistema cuadrátic

x^{2} + y^{2} = x + p
x^{2} + y^{2} = y + q
x + y = m


(1/2)·( x [+] y )^{2} = x + p
(1/2)·( x [+] y )^{2} = y + q
x + y = m


(1/2)·( (m/2) [+] (m/2) )^{2} = x + p
(1/2)·( (m/2) [+] (m/2) )^{2} = y + q
x + y = m


(m^{2}/2) = x + p
(m^{2}/2) = y + q
x + y = m


(m^{2}/2) + (-p) = x
(m^{2}/2) + (-q) = y
x + y = m


m^{2} = m + (p [+] q)


m = (1/2)·( 1+( 1+4·(p[+]q) )^{(1/2)} )


x + y = m
(1/4)·( 1+2·( 1+4·(p[+]q) )^{(1/2)}+(1+4·(p[+]q)) ) + (-1)·(p[+]q) = ...
...  (1/2)·( 1+( 1+4(p[+]q) )^{(1/2)} )


(1/2)·m^{4} + (-1)·(p[+]q)·m^{2} + (1/2)·(p[+]q)^{2} = (1/2)·m^{2}
(1/32)·( 1 + 4·( 1+4·(p[+]q) )^{(1/2)} + 6·( 1+4·(p[+]q) ) + ...
... 4·(1+4·(p[+]q))·( 1+4·(p[+]q) )^{(1/2)} + (1+4·(p[+]q))^{2} ) = ...
... (1/8)·( 1+2·( 1+4·(p[+]q) )^{(1/2)}+(1+4·(p[+]q)) )



suma directa

k·( 1 [+]...(m)...[+] 1 )^{n+1} = ...
... ( 1^{n+1} [+]...(m)...[+] 1^{n+1} ) = ...
... ( 1^{n} [+]...(m)...[+] 1^{n} )·1 = ...
... m·1 = m


( 1 +...(m)...+ 1 )^{n+1} = ...
... ( 1 +...(m)...+ 1 )^{n}·(1 +...(m)...+ 1 ) = ...
... m^{n}·m = ...
... m^{n+1}


on hem utilitzat:
( x [+] y )·z = (x·z) [+] (y·z)


k·( a [+]...(m)...[+] a )^{n+1} = ...
... ( a^{n+1} [+]...(m)...[+] a^{n+1} ) = ...
... ( a^{n} [+]...(m)...[+] a^{n} )·a = ...
... (m·a^{n})·a = m·a^{n+1}


( a +...(m)...+ a )^{n+1} = ...
... ( a +...(m)...+ a )^{n}·( a +...(m)...+ a ) = ...
... (ma)^{n}·ma = ...
... (m·a)^{n+1}


(1/2^{(n+(-1))})·( x[+]y )^{n} = x^{n}+y^{n}


(1/2)·( x[+]y )^{2} =  (1/2)·( x[+]y )·( x[+]y ) = x^{2}+y^{2}


(1/2)·( x[+]y )^{2} = ( (x+iy)·(x+(-i)y) )



energia del sexo

0111-11-11 + 11-1110111-11 = 11
1-11-1110111-11-1 + 0111-11 = 11


0111 + 11-1110111-11 = 0111
1-1110111-1 + 0111-11 = 0111


0111-11-11 + 1-1110111-1 = 00
1-11-1110111-11-1 + 0111 = 00


0111 + 1-1110111-1 = 1110111
0111-11-11 + 1-11-1110111-11-1 = 11-11


0111-11 + 11-1110111-11 = 00

Leyes de psicología y psiquiatría

Mandamiento:
No desearás la vida de otro, sin intersección de otro, porque la vida le pertenece a él.


Ley:
Está prohibido hacer reuniones familiares y hablar del sujeto familiar.


Ley:
Está prohibido obligar-te a ser visitado por un médico o médico psiquiátrico o psicólogo o enfermero.


Ley:
Está prohibido visitar a un supuesto enfermo y obligarlo a salir.

martes, 7 de enero de 2020

articles determinats: el-la


el gelati <==> el yelado <==> el gelat <==> el yeladu <==> el gelatu-dut
la gelata <==> la yelada <==> la gelada <==> la yelada <==> la gelata-dat


lis gelatis <==> los yelados <==> els gelats <==> lus yeladus <==> els gelatus-dut
las gelatas <==> las yeladas <==> las geladas <==> las yeladas <==> las gelatas-dat

lunes, 6 de enero de 2020

anexo evangélico de sant Jûan l'stronikiano y la puerta del Cielo

Afirmación:
tú que de jovencito, o jovencita,
aun buscas la puerta del Cielo;
porque aun no la has encontrado.
Aun no has pagado condenación de pensamiento o de milagro.
La puerta está cerrada,
y no está abierta,
por tener condenación de pensamiento o de milagro,
y aun no haberla pagado caminando.


Negación:
tú que de viejo, o vieja,
ya no buscas la puerta del Cielo;
porque ya la has encontrado.
Ya has pagado condenación de pensamiento o de milagro.
La puerta no está cerrada,
y está abierta,
por no tener condenación de pensamiento o de milagro,
y ya haberla pagado caminando.

articles indeterminats: un-una

un gelati <==> un yelado <==> un gelat <==> un yeladu <==> un gelatu-dut
una gelata <==> una yelada <==> una gelada <==> una yelada <==> una gelata-dat


unis gelatis <==> unos yelados <==> uns gelats <==> unus yeladus <==> uns gelatus-dut
unas gelatas <==> unas yeladas <==> unas geladas <==> unas yeladas <==> unas gelatas-dat

domingo, 5 de enero de 2020

dual-portuguésh

yo cantaresh
tú cantaresh
él cantaresh
ella cantaresh


nosotros cantamush
vosotros cantáish
ellos cantan-esh
ellas cantan-esh

mecànica el trampolín parabólic

qgH + (-1)·qgy + (-1)·(m/2)·d_{t}[y]^{2} = qgy + (m/2)·d_{t}[y]^{2}


y(t) = (-1)·(1/2)·( (qg)/m )·t^{2} + (H/2)


d_{t}[y(t)] = (-1)·( (qg)/m )·t


d_{t}[y(t)] = 0 <==> y(t) = (H/2)


d_{t}[y(t)] = a <==> y(t) = (-1)·(1/2)·( m/(qg) )·a^{2} + (H/2)


0 = (-1)·(1/2)·( (qg)/m )·t^{2} + (H/2)


(H/2) = (1/2)·( (qg)/m )·t^{2}
t = ( ( (Hm)/(qg) ) )^{(1/2)}


qg(H/2) = (m/2)·d_{t}[x]^{2}


x(t) = ( ( (qgH)/m ) )^{(1/2)}·t


abast:
x(( ( (Hm)/(qg) ) )^{(1/2)}) = ( ( ( (qgH)/m ) )^{(1/2)} )·( ( ( (Hm)/(qg) ) )^{(1/2)} )
x(( ( (Hm)/(qg) ) )^{(1/2)}) = H


trayectoria de vuelo:
y = (-1)·( 1/(2H) )·x^{2}+(H/2)


y = (H/2) <==> x = 0


0 = (-1)·( 1/(2H) )·H^{2}+(H/2) <==> ( x = H or x = (-H) )


trayectoria de la rampa:
y = ( 1/(2H) )·x^{2}+(H/2)


y = (H/2) <==> x = 0


H = ( 1/(2H) )·H^{2}+(H/2) <==> ( x = H or x = (-H) )

morfosintaxis-lógica [x] que p(x), q(x)

el que pensa, camina.
[ [x] és el ]-[ [x] que p(x), q(x) ]


la que pensa, camina.
[ [x] és la ]-[ [x] que p(x), q(x) ]

morfosintaxis-lógica agradar


a mi me agrada el cotxe.
[ [y] és mi ]-[ a [y] li agrada [x] ]-[ ∀$1$ x ][ [x] és cotxe ]


a mi no me agrada el cotxe.
[ [y] és mi ]-[ a [y] no li agrada [x] ]-[ ∀$1$ x ][ [x] és cotxe ]

morfosintaxis-lógica complement del nom


menjû aquets tres quarts de pizza.
[ [x] és yo ]-[ [x] menja [y] ]-[ ∀&3& y ][ [ [y] és quart de [z] ]-[ [z] és pizza ] ]


no menjû aquets tres quarts de pizza.
[ [x] és yo ]-[ [x] no menja [y] ]-[ ∀&3& y ][ [ [y] és quart de [z] ]-[ [z] és pizza ] ]


menjû aquet quart de pizza.
[ [x] és yo ]-[ [x] menja [y] ]-[ ∀&1& y ][ [ [y] és quart de [z] ]-[ [z] és pizza ] ]


no menjû aquet quart de pizza.
[ [x] és yo ]-[ [x] no menja [y] ]-[ ∀&1& y ][ [ [y] és quart de [z] ]-[ [z] és pizza ] ]

morfosintaxis-lógica article aquestes-aquelles n


cantû aquestes n cantçions.
[ [x] és yo ]-[ [x] canta [y] ]-[ ∀&n& y ][ [y] és cantçió ]


no cantû aquestes n cantçions.
[ [x] és yo ]-[ [x] no canta [y] ]-[ ∀&n& y ][ [y] és cantçió ]


cantû aquelles n cantçions.
[ [x] és yo ]-[ [x] canta [y] ]-[ ∃&n& y ][ [y] és cantçió ]


no cantû aquelles n cantçions.
[ [x] és yo ]-[ [x] no canta [y] ]-[ ∃&n& y ][ [y] és cantçió ]

morfosintaxis-lógica article aquestes-aquelles


cantû aquestes cantçions.
[ [x] és yo ]-[ [x] canta [y] ]-[ ∀&...& y ][ [y] és cantçió ]


no cantû aquestes cantçions.
[ [x] és yo ]-[ [x] no canta [y] ]-[ ∀&...& y ][ [y] és cantçió ]


cantû aquelles cantçions.
[ [x] és yo ]-[ [x] canta [y] ]-[ ∃&...& y ][ [y] és cantçió ]


no cantû aquelles cantçions.
[ [x] és yo ]-[ [x] no canta [y] ]-[ ∃&...& y ][ [y] és cantçió ]