lunes, 20 de enero de 2020
integrals potencials
∫ [( f(x) )^{n}] d[x] = (1/(n+1))( f(x) )^{(n+1)} [o(x)o] ( f(x) )^{[o(x)o](-1)}
∫ [ ( ax^{2}+bx )^{n} ] d[x] = (1/(n+1))( ax^{2}+bx )^{(n+1)} [o(x)o] (1/2a)·ln(2ax+b)
∫ [ ( ax^{3}+bx^{2}+cx )^{n} ] d[x] = ...
...(1/(n+1))( ax^{3}+bx^{2}+cx )^{(n+1)} [o(x)o] ( ln(3ax^{2}+2bx+c) [o(x)o] (1/6a)·ln(6ax+2b) )
∫ [ ( ax^{4}+bx^{3}+cx^{2}+dx )^{n} ] d[x] = ...
...(1/(n+1))( ax^{4}+bx^{3}+cx^{2}+dx )^{(n+1)} [o(x)o] ...
...( ln(4ax^{3}+3bx^{2}+2cx+d) [o(x)o] ln(12ax^{2}+6bx+2c) [o(x)o] (1/24a)·ln(24ax+6b) )
Suscribirse a:
Enviar comentarios (Atom)
No hay comentarios:
Publicar un comentario