d_{x}[ sin-arc[n](x) ] = d_{x}[ x^{n}·sin(x) ] = ...
... (1/x)·( n·sin-arc[n](x)+x·( x^{2n}+(-1)·( sin-arc[n](x) )^{2} )^{(1/2)} )
d_{y}[ arc[n]-sin(y) ] = ...
... arc[n]-sin(y)·( 1/( n·y+arc[n]-sin(y)·( ( arc[n]-sin(y) )^{2n}+(-1)·y^{2} )^{(1/2)} ) )
f(x) = (1/y)·( n·sin-arc[n](y)+y·cos-arc[n](y) )·d_{x}[y]
int[ f(x) ] d[x] = y^{n}·sin(y)
int[ f(x) ] d[x] = sin-arc[n](y)
arc[n]-sin( int[ f(x) ] d[x] ) = y(x)
No hay comentarios:
Publicar un comentario