d_{x}[ sin-e[n](x) ] = d_{x}[ e^{nx}·sin(x) ] = ...
... n·sin-e[n](x)+( e^{2nx}+(-1)·( sin-e[n](x) )^{2} )^{(1/2)}
d_{y}[ e[n]-sin(y) ] = ...
... ( 1/( ny+( e^{2n·e[n]-sin(y)}+(-1)·y^{2} )^{(1/2)} ) )
f(x) = ( n·sin-e[n](y)+cos-e[n](y) )·d_{x}[y]
int[ f(x) ] d[x] = e^{ny}·sin(y)
int[ f(x) ] d[x] = sin-e[n](y)
e[n]-sin( int[ f(x) ] d[x] ) = y(x)
No hay comentarios:
Publicar un comentario