Principio: [ de Pitagorancias ]
x^{n+1}+y^{n+1}+u^{n+1}+v^{n+1} = n^{n+1}
(1/C)·L^{2}·d_{tttt}^{4}[q]+(-C)·q(t) = 0
q(t) = cch[n]-[4k = 1]( (C/L)^{(1/2)}·t )+cch[n]-[4k+1 = i]( (C/L)^{(1/2)}·t )+...
... cch[n]-[4k+2 = (-1)]( (C/L)^{(1/2)}·t )+cch[n]-[4k+3 = (-i)]( (C/L)^{(1/2)}·t )
(1/C)·L^{2}·d_{tttt}^{4}[p]+(-C)·p(t) = 0
p(t) = cch[n]-[4k = 1]( (C/L)^{(1/2)}·it )+cch[n]-[4k+1 = i]( (C/L)^{(1/2)}·it )+...
... cch[n]-[4k+2 = (-1)]( (C/L)^{(1/2)}·it )+cch[n]-[4k+3 = (-i)]( (C/L)^{(1/2)}·it )
Ley: [ de memorias ]
(1/C)·L^{2}·d_{tttt}^{4}[q]+C·q(t) = 0
q(t) = cc[n]-[4k = 1]( (C/L)^{(1/2)}·t )+cc[n]-[4k+1 = i]( (C/L)^{(1/2)}·t )+...
... cc[n]-[4k+2 = (-1)]( (C/L)^{(1/2)}·t )+cc[n]-[4k+3 = (-i)]( (C/L)^{(1/2)}·t )
(1/C)·L^{2}·d_{tttt}^{4}[p]+C·p(t) = 0
p(t) = cc[n]-[4k = 1]( (C/L)^{(1/2)}·it )+cc[n]-[4k+1 = i]( (C/L)^{(1/2)}·it )+...
... cc[n]-[4k+2 = (-1)]( (C/L)^{(1/2)}·it )+cc[n]-[4k+3 = (-i)]( (C/L)^{(1/2)}·it )
Ley: [ de Grabación magnética de sonido ]
Diferencial exterior:
R·d_{t}[q]·C·p(t)+C·q(t)·R·d_{t}[p] = 0
RC·d_{t}[ p(t)·q(t) ] = 0
q(t) = qe^{ut}
p(t) = pe^{(-1)·ut}
Ley: [ de Borrado magnético de sonido ]
Diferencial interior:
(1/W)^{2}·( R·d_{t}[q]·C·p(t)+C·q(t)·R·d_{t}[p] ) = 1
(1/W)^{2}·RC·d_{t}[ p(t)·q(t) ] = 1
q(t) = W·( (1/(RC))·t )^{(1/2)}·e^{ut}
p(t) = W·( (1/(RC))·t )^{(1/2)}·e^{(-1)·ut}
Ley: [ de Grabación magnética de imagen ]
Diferencial exterior:
R·d_{t}[q]·C·p(t)+C·q(t)·R·d_{t}[p] = 0
RC·d_{t}[ p(t)·q(t) ] = 0
q(t) = qe^{uit}
p(t) = pe^{(-1)·uit}
Ley: [ de Borrado magnético de imagen ]
Diferencial interior:
(1/W)^{2}·( R·d_{t}[q]·C·p(t)+C·q(t)·R·d_{t}[p] ) = 1
(1/W)^{2}·RC·d_{t}[ p(t)·q(t) ] = 1
q(t) = W·( (1/(RC))·t )^{(1/2)}·e^{uit}
p(t) = W·( (1/(RC))·t )^{(1/2)}·e^{(-1)·uit}
Ley: [ de Grabador de calor de sonido ]
Diferencial exterior:
d_{t}[T(q,t)]·(1/u)·T(p,t)+(1/u)·T(q,t)·d_{t}[T(p,t)] = 0
(1/u)·d_{t}[ T(p,t)·T(q,t) ] = 0
T(q,t) = T(q)·e^{ut}
T(p,t) = T(p)·e^{(-1)·ut}
Ley: [ de Borrado de calor de sonido ]
Diferencial interior:
(1/T)^{2}·( d_{t}[T(q,t)]·(1/u)·T(p,t)+(1/u)·T(q,t)·d_{t}[T(p,t)] ) = 1
(1/T)^{2}·(1/u)·d_{t}[ T(p,t)·T(q,t) ] = 1
T(q,t) = T·(ut)^{(1/2)}·e^{ut}
T(p,t) = T·(ut)^{(1/2)}·e^{(-1)·ut}
Ley: [ de Grabador de calor de imagen ]
Diferencial exterior:
d_{t}[T(q,t)]·(1/u)·T(p,t)+(1/u)·T(q,t)·d_{t}[T(p,t)] = 0
(1/u)·d_{t}[ T(p,t)·T(q,t) ] = 0
T(q,t) = T(q)·e^{uit}
T(p,t) = T(p)·e^{(-1)·uit}
Ley: [ de Borrado de calor de imagen ]
Diferencial interior:
(1/T)^{2}·( d_{t}[T(q,t)]·(1/u)·T(p,t)+(1/u)·T(q,t)·d_{t}[T(p,t)] ) = 1
(1/T)^{2}·(1/u)·d_{t}[ T(p,t)·T(q,t) ] = 1
T(q,t) = T·(ut)^{(1/2)}·e^{uit}
T(p,t) = T·(ut)^{(1/2)}·e^{(-1)·uit}
Ley:
No siguiendo al Diablo,
no se puede ser malo,
porque si te crees que la gente es,
no puede haber ninguien,
siendo todo lo malo condenación,
aunque quizás se cumple Hobbes sin condenación.
Siguiendo al Diablo,
se puede ser malo,
porque si te crees que la gente no es,
puede haber alguien,
siendo todo-algo lo malo no condenación,
porque se cumple Hobbes sin condenación.
Ley:
La música perfecta,
provoca enfermedades mentales como defensa,
en ser la partitura una fórmula química de una medicación,
siendo el baremo musical un estado psicológico.
Ley: [ de esclerosis múltiple ]
Sea ( x el final de estar curado & y el final de estar enfermo ) ==>
Sea ( a = 22 & b = 82 ) ==>
[01][01][01][...][01][...][05][...][03][01][03][01][05][...][...][...] = 22+(-6) = 2·11+(-6)
[07][07][07][...][07][...][11][...][09][07][09][07][11][...][...][...] = 82+(-6) = 2·41+(-6)
Arte de Stephen Hawking de provocación de catatonia:
22+u(-6) = 22+(-6)+5 = 22+(-1) = 21 = 7·3 = 20+1 = 4·5+1
82+v(-6) = 82+(-6)+1 = 82+(-5) = 77 = 7·11 = 76+1 = 4·19+1
76+(-21) = 55 = 5·11 = f(5)·g(11) = (4·5)·(7·11) = 20·77
Fórmula:
-(COH)=(COH)-(COH)=(COH)-CO-CH-(SN)=(COH)-(SN)=(COH)-CO-CH-
Definición:
A(n) = [ n // k ] x [ n // n+(-k) ]
F(x) = sum[n = 1]-[oo][ [ n // k ]·[ n // n+(-k) ]·x^{n} ]
Teorema:
[EA][ A = {a} [< & >] {b} [& || &] [ 3 // 1 ] x [ 3 // 2 ] & A [<< [ 3 // 1 ] x [ 3 // 2 ] ]
Demostración:
A = { < {a},{a,b} >,< {a},{b,c} > }
Teorema:
[EA][ A = ¬( {a} [< & >] {b} ) [& || &] [ 3 // 1 ] x [ 3 // 2 ] & A [<< [ 3 // 1 ] x [ 3 // 2 ] ]
Demostración:
A = { < {a},{c,a} >,< {a},{a,b} >,< {b},{a,b} >,< {b},{b,c} >,< {b},{c,a} > }
Teorema:
[EA][ A = ( {a} [< || >] {b} ) [& || &] [ 3 // 1 ] x [ 3 // 2 ] & A [<< [ 3 // 1 ] x [ 3 // 2 ] ]
Demostración:
A = { < {a},{c,a} >,< {a},{a,b}>,< {a},{b,c} >,< {b},{a,b} >,< {b},{b,c} > }
Teorema:
[EA][ A = ¬( {a} [< || >] {b} ) [& || &] [ 3 // 1 ] x [ 3 // 2 ] & A [<< [ 3 // 1 ] x [ 3 // 2 ] ]
Demostración:
A = { < {b},{c,a} >,< {b},{a,b} > }
Teorema:
[EA][ A = ( {a} [< |o| >] {b} ) [& || &] [ 3 // 1 ] x [ 3 // 2 ] & A [<< [ 3 // 1 ] x [ 3 // 2 ] ]
Demostración:
A = { < {a},{a,b} >,< {a},{c,a} >,< {b},{a,b} >,< {b},{b,c} > }
Teorema:
[EA][ A = ¬( {a} [< |o| >] {b} ) [& || &] [ 3 // 1 ] x [ 3 // 2 ] & A [<< [ 3 // 1 ] x [ 3 // 2 ] ]
Demostración:
A = { < {a},{a,b} >,< {a},{b,c} >,< {b},{c,a} >,< {b},{a,b} > }
Especie derivada:
Teorema:
Sea F(x) = sum[n = 1]-[oo][ x^{n} ] ==>
d_{x}[ F(x) ] = sum[n = 1]-[oo][ (n+1)·x^{n} ]
d_{x}[ [ A ] ] = [ A ]-[ {a_{1}},...,{a_{n}} ]
Arte:
Sea F(x) = sum[n = 1]-[oo][ nx^{n} ] ==>
d_{x}[ F(x) ] != sum[n = 1]-[oo][ (n^{2}+1)·x^{n} ]
d_{x}[ [ {a_{1}},...,{a_{n}} ] ] != [ A ]-...
... [ < {a_{1}},{a_{1}} >,...,< {a_{1}},{a_{n}} >,...,< {a_{n}},{a_{1}} >,...,< {a_{n}},{a_{n}} > ]
Arte:
Sea F(x) = sum[n = 1]-[oo][ (n+1)·x^{n} ] ==>
d_{x}[ F(x) ] != sum[n = 1]-[oo][ (n^{2}+n)·x^{n} ]
d_{x}[ [ A ]-[ {a_{1}},...,{a_{n}} ] ] != [ < A,{a_{1}} >,...,< A,{a_{n}} > ]-...
... [ < {a_{1}},{a_{1}} >,...,< {a_{1}},{a_{n}} >,...,< {a_{n}},{a_{1}} >,...,< {a_{n}},{a_{n}} > ]
Arte:
Sea F(x) = sum[n = 1]-[oo][ [ 2n // n ]·x^{n} ] ==>
d_{x}[ F(x) ] != sum[n = 1]-[oo][ (n+1)·x^{n} ]
d_{x}[ [ 2n // n ] ] != [ A ]-[ {a_{1}},...,{a_{n}} ]
Arte:
Sea F(x) = sum[n = 1]-[oo][ [ n // 1 ]·[ n // n+(-1) ]·x^{n} ] ==>
d_{x}[ F(x) ] != sum[n = 1]-[oo][ (n+1)·x^{n} ]
d_{x}[ [ n // 1 ] x [ n // n+(-1) ] ] != [ A ]-[ {a_{1}},...,{a_{n}} ]
Especie generatriz:
Teorema:
Sea F(x) = sum[n = 1]-[oo][ nx^{n} ] ==>
d_{k}[ F(x) ] = sum[n = 1]-[oo][ n^{2}·x_{n} ]
d_{k}[ [ {a_{1}},...,{a_{n}} ] ] = ...
... [ < {a_{1}},{a_{1}} >,...,< {a_{1}},{a_{n}} >,...,< {a_{n}},{a_{1}} >,...,< {a_{n}},{a_{n}} > ]
Teorema:
Sea F(x) = sum[n = 1]-[oo][ (n+1)·x^{n} ] ==>
d_{k}[ F(x) ] = sum[n = 1]-[oo][ (n^{2}+n)·x_{n} ]
d_{k}[ [ A ]-[ {a_{1}},...,{a_{n}} ] ] = [ < A,{a_{1}} >,...,< A,{a_{n}} > ]-...
... [ < {a_{1}},{a_{1}} >,...,< {a_{1}},{a_{n}} >,...,< {a_{n}},{a_{1}} >,...,< {a_{n}},{a_{n}} > ]
Arte:
Sea F(x) = sum[n = 1]-[oo][ [ 2n // n ]·x^{n} ] ==>
d_{k}[ F(x) ] != sum[n = 1]-[oo][ nx_{n} ]
d_{k}[ [ 2n // n ] ] != [ {a_{1}},...,{a_{n}} ]
Arte:
Sea F(x) = sum[n = 1]-[oo][ [ n // 1 ]·[ n // n+(-1) ]·x^{n} ] ==>
d_{k}[ F(x) ] != sum[n = 1]-[oo][ nx_{n} ]
d_{k}[ [ n // 1 ] x [ n // n+(-1) ] ] != [ {a_{1}},...,{a_{n}} ]
Especie derivada de transmisión matemática:
Transmisión de 2 clavos:
Teorema:
Sea F(x) = sum[n = 1]-[oo][ < u,v >·x^{n} ] ==>
d_{x}[ F(x) ] = sum[n = 1]-[oo][ < u,v >·(n+1)·x^{n} ]
d_{x}[ [ < u,v > ] ] = [ < u,v > ]-[ < < u,v >,{a_{1}} >,...,< < u,v >,{a_{n}} > ]
Arte:
Sea F(x) = sum[n = 1]-[oo][ < ax,bx >·x^{n} ] ==>
d_{x}[ F(x) ] != sum[n = 1]-[oo][ < ax,bx >·nx^{n} ]
d_{x}[ [ < ax,bx > ] ] != [ < < ax,bx >,{a_{1}} >,...,< < ax,bx >,{a_{n}} > ]
Transmisión de 3 clavos según LaGrange:
Teorema:
< ax^{2},bx^{2} > = < 2ax,2bx > <==> x = 2
Arte:
Sea F(x) = sum[n = 1]-[oo][ < ax^{2},bx^{2} >·x^{n} ] ==>
d_{x}[ F(x) ] != sum[n = 1]-[oo][ < ax^{2},bx^{2} >·(n+1)·x^{n} ]
d_{x}[ [ < ax^{2},bx^{2} > ] ] != ...
... [ < ax^{2},bx^{2} > ]-[ < < ax^{2},bx^{2} >,{a_{1}} >,...,< < ax^{2},bx^{2} >,{a_{n}} > ]
Especie generatriz de transmisión matemática:
Transmisión de 2 clavos:
Teorema:
Sea F(x) = sum[n = 1]-[oo][ < u,v >·x^{n} ] ==>
d_{k}[ F(x) ] = sum[n = 1]-[oo][ < u,v >·nx_{n} ]
d_{k}[ [ < u,v > ] ] = [ < < u,v >,{a_{1}} >,...,< < u,v >,{a_{n}} > ]
Teorema:
Sea F(x) = sum[n = 1]-[oo][ < ax,bx >·x^{n} ] ==>
d_{k}[ F(x) ] = sum[n = 1]-[oo][ < a,b >·(n+1)·x_{n+1} ]
d_{k}[ [ < ax,bx > ] ] = [ < a,b > ]-[ < < a,b >,{a_{1}} >,...,< < a,b >,{a_{n}} > ]
Transmisión de 3 clavos según LaGrange:
Teorema:
< ax^{2},bx^{2} > = < 2ax,2bx > <==> x = 2
Arte:
Sea F(x) = sum[n = 1]-[oo][ < ax^{2},bx^{2} >·x^{n} ] ==>
d_{k}[ F(x) ] != sum[n = 1]-[oo][ < a,b >·nx_{n} ]
d_{k}[ [ < ax^{2},bx^{2} > ] ] != [ < < a,b >,{a_{1}} >,...,< < a,b >,{a_{n}} > ]
Teorema: [ Especie transmisión de 4 clavos de reloj de arena ]
[ < 2ax,(-1)·2ax > ]-[ < 4a,(-1)·4a > ]
Teorema: [ Especie transmisión de 5 clavos doble triangular ]
[ < ax^{2},(-1)·ax^{2} > ]-[ < 4a,(-1)·4a > ]
Teorema:
[ < ax^{2},(-1)·ax^{2} > ]+(-1)·[ < 4a,(-1)·4a > ] = ...
... ( [ < a^{(1/2)}·x,(-1)·a^{(1/2)}·x > ]+[ < 2a^{(1/2)},(-1)·2a^{(1/2)} > ] )·...
... ( [ < a^{(1/2)}·x,(-1)·a^{(1/2)}·x > ]+(-1)·[ < 2a^{(1/2)},(-1)·2a^{(1/2)} > ] )
Teorema:
[ < ax^{2},(-1)·ax^{2} > ]+[ < 4a,(-1)·4a > ] = ...
... ( [ < a^{(1/2)}·x,(-1)·a^{(1/2)}·x > ]+i·[ < 2a^{(1/2)},(-1)·2a^{(1/2)} > ] )·...
... ( [ < a^{(1/2)}·x,(-1)·a^{(1/2)}·x > ]+(-i)·[ < 2a^{(1/2)},(-1)·2a^{(1/2)} > ] )
Teorema:
[ < ax^{2},(-1)·ax^{2} > ]+[ < 4a,(-1)·4a > ]+...
... 2·[ < a^{(1/2)}·x,(-1)·a^{(1/2)}·x > ]·[ < 2a^{(1/2)},(-1)·2a^{(1/2)} > ] = ...
... ( [ < a^{(1/2)}·x,(-1)·a^{(1/2)}·x > ]+[ < 2a^{(1/2)},(-1)·2a^{(1/2)} > ] )^{2}
Teorema:
[ < ax^{2},(-1)·ax^{2} > ]+[ < 4a,(-1)·4a > ]+...
... (-2)·[ < a^{(1/2)}·x,(-1)·a^{(1/2)}·x > ]·[ < 2a^{(1/2)},(-1)·2a^{(1/2)} > ] = ...
... ( [ < a^{(1/2)}·x,(-1)·a^{(1/2)}·x > ]+(-1)·[ < 2a^{(1/2)},(-1)·2a^{(1/2)} > ] )^{2}
Teorema: [ Especie transmisión de 8 clavos de máximo y mínimo ]
[ < ax^{3},(-1)·ax^{3} > ]+[ < 27a,(-1)·27a > ]
Teorema:
[ < ax^{3},(-1)·ax^{3} > ]+(-1)·[ < 27a,(-1)·27a > ] = ...
... ( [ < a^{(1/3)}·x,(-1)·a^{(1/3)}·x > ]+(-1)·[ < 3a^{(1/3)},(-1)·3a^{(1/3)} > ] )·...
... ( [ < a^{(2/3)}·x^{2},(-1)·a^{(2/3)}·x^{2} > ]+[ < 9a^{(2/3)},(-1)·9a^{(2/3)} > ]+...
... [ < a^{(1/3)}·x,(-1)·a^{(1/3)}·x > ]·[ < 3a^{(1/3)},(-1)·3a^{(1/3)} > ] )
Teorema:
[ < ax^{3},(-1)·ax^{3} > ]+[ < 27a,(-1)·27a > ] = ...
... ( [ < a^{(1/3)}·x,(-1)·a^{(1/3)}·x > ]+[ < 3a^{(1/3)},(-1)·3a^{(1/3)} > ] )·...
... ( [ < a^{(2/3)}·x^{2},(-1)·a^{(2/3)}·x^{2} > ]+[ < 9a^{(2/3)},(-1)·9a^{(2/3)} > ]+...
... (-1)·[ < a^{(1/3)}·x,(-1)·a^{(1/3)}·x > ]·[ < 3a^{(1/3)},(-1)·3a^{(1/3)} > ] )
Teorema:
e^{2pi·i} = e^{0} = 1
e^{pi·i} = e^{(0/2)} = ( e^{0} )^{(1/2)} = (-1)
Teorema:
Sea f(a) = ( 1/(pi·i) )·a ==> (2n)·pi·i·f(a) = ((0/0)·2n)·a = (2n)·a
Sea f(a) = ( 1/(pi·i) )·a ==> (2n+1)·pi·i·f(a) = ((0/0)·2n+1)·a = (2n+1)·a
Teorema: [ de la integral de Cauchy positiva ]
lim[r = 0][ int[x = 0]-[2pi]-[z = re^{xi}+a][ ( f(z)/(z+(-a)) )·d_{x}[z] ]d[x] ] = 2pi·i·f(a)
Teorema:
Res(f(w(z)),a) = lim[z = a][ (z+(-a))^{2}·f(w(z))·d_{z}[w(z)] ]
Demostración:
Res(f(w(z)),a) = ( 2pi·i )^{2}·f(w(a))·d_{a}[w(a)] = 0^{2}·f(w(a))·d_{a}[w(a)] = ...
... lim[z = a][ (z+(-a))^{2}·f(w(z))·d_{z}[w(z)] ]
Sea f(z) = ( g(z)/(z^{n}+(-a)) ) ==>
f(a^{(1/n)}) = g(a^{(1/n)})·oo
Res(f(z^{(1/n)}),a) = 2pi·i·g(a^{(1/n)})·d_{a}[a^{(1/n)}]
Teorema: [ Fundamental de los Residuos ]
Sea f(z) = ( g(z)/H(z) ) ==>
Si H(w(a)) = 0 ==> Res(f(w(z)),a) = lim[z = a][ 2pi·i·( g(w(z))/d_{w(z)}[H(w(z))] ) ]
Demostración:
Res(f(w(z)),a) = lim[z = a][ (z+(-a))^{2}·f(w(z))·d_{z}[w(z)] ] = ...
... lim[z = a][ (z+(-a))^{2}·( g(w(z))/H(w(z)) )·d_{z}[w(z)] ] = ...
... lim[z = a]-[h = 0][ h^{2}·( g(w(z))/H(w(z)) )·d_{z}[w(z)] ]...
... lim[z = a]-[h = 0][ h^{2}·( g(w(z))/( H(w(a)+h)+(-1)·H(w(a)) ) )·d_{z}[w(z)] ] = ...
... lim[z = a][ 2pi·i·( g(w(z))/d_{w(z)}[H(w(z))] ) ]
Teorema:
Sea f(z) = ( g(z)/(z^{n}+(-a)) ) ==> ...
... Res( f( z^{(1/n)} ),a ) = 2pi·i·g( a^{(1/n)} )·( 1/(n·( a^{(1/n)} )^{n+(-1)}) )
... Res( f( z^{(1/n)} ),a ) = 2pi·i·g( a^{(1/n)} )·(1/n)·a^{(1/n)+(-1)}
Teorema:
Sea f(z) = ( g(z)/(e^{nz}+(-a)) ) ==> ...
... Res( f( (1/n)·ln(z) ),a ) = 2pi·i·g( (1/n)·ln(a) )·( 1/(ne^{n·( (1/n)·ln(a) )}) )
... Res( f( (1/n)·ln(z) ),a ) = 2pi·i·g( (1/n)·ln(a) )·( 1/(na) )
Teorema:
Sea f(z) = ( g(z)/(z^{2}+((-a)+(-b))·z+ab) ) = ( g(z)/( (z+(-a))·(z+(-b)) ) ) ==> ...
... Res(f(z),a) = 2pi·i·g(a)·( 1/(2a+(-a)+(-b)) )
... Res(f(z),a) = 2pi·i·g(a)·( 1/(a+(-b)) )
... Res(f(z),b) = 2pi·i·g(b)·( 1/(2b+(-a)+(-b)) )
... Res(f(z),b) = 2pi·i·g(b)·( 1/(b+(-a)) )
Teorema: [ de la integral de Cauchy negativa ]
lim[r = 0][ int[x = 0]-[2pi]-[z = re^{(-1)·xi}+a][ f(z)·(z+(-a))·( 1/d_{x}[z] ) ]d[x] ] = 2pi·i·f(a)
Teorema:
Anti-Res(f(w(z)),a) = lim[z = a][ f(w(z))·( 1/d_{z}[w(z)] ) ]
Demostración:
Anti-Res(f(w(z)),a) = f(w(a))·( 1/d_{a}[w(a)] ) = lim[z = a][ f(w(z))·( 1/d_{z}[w(z)] ) ]
Sea f(z) = g(z)·(z^{n}+(-a)) ==>
f(a^{(1/n)}) = g(a^{(1/n)})·0
Anti-Res(f(z^{(1/n)}),a) = 2pi·i·g(a^{(1/n)})·( 1/d_{a}[a^{(1/n)}] )
Teorema: [ Fundamental de los Anti-Residuos ]
Sea f(z) = g(z)·H(z) ==>
Si H(w(a)) = 0 ==> Anti-Res(f(w(z)),a) = lim[z = a][ 2pi·i·g(w(z))·d_{w(z)}[H(w(z))] ]
Demostración:
Anti-Res(f(w(z)),a) = lim[z = a][ f(w(z))·( 1/d_{z}[w(z)] ) ] = ...
... lim[z = a][ g(w(z))·H(w(z))·( 1/d_{z}[w(z)] ) ] = ...
... lim[z = a]-[h = 0][ g(w(z))·( H(w(z))+(-1)·H(w(a)) )·( 1/d_{z}[w(z)] ) ]...
... lim[z = a]-[h = 0][ g(w(z))·( H(w(a)+h)+(-1)·H(w(a)) ) )·( 1/d_{z}[w(z)] ) ] = ...
... lim[z = a][ 2pi·i·g(w(z))·d_{w(z)}[H(w(z))] ]
Teorema:
Sea f(z) = g(z)·( z^{n}+(-a) ) ==> ...
... Anti-Res( f( z^{(1/n)} ),a ) = 2pi·i·g( a^{(1/n)} )·( n·( a^{(1/n)} )^{n+(-1)} )
... Anti-Res( f( z^{(1/n)} ),a ) = 2pi·i·g( a^{(1/n)} )·( 1/( (1/n)·a^{(1/n)+(-1)} ) )
Teorema:
Sea f(z) = g(z)·( e^{nz}+(-a) ) ==> ...
... Anti-Res( f( (1/n)·ln(z) ),a ) = 2pi·i·g( (1/n)·ln(a) )·( ne^{n·( (1/n)·ln(a) )} )
... Anti-Res( f( (1/n)·ln(z) ),a ) = 2pi·i·g( (1/n)·ln(a) )·( 1/(1/(na)) )
Principio: [ de fuerza de singularidad en r = 0 ]
F(r,x) = int[ k(r)·ln(re^{xi}+d) ]d[r]
Ley:
Res(( f(z)/(z+(-d)) ),d) = 2pi·i·f(d)
Anti-Res(( f(z)·(z+(-d)) ),d) = 2pi·i·f(d)
Ley: [ de tornado de grado d positivo ]
Sea z = re^{xi} ==>
int[r = 0]-[oo][ 2pi·i ]d[z] = e^{xi}
F(r,x) = int[r = 0]-[r][ k·ln(re^{xi}+d) ]d[r] = k·ln(re^{xi}+d)·r
int[ F(r,x) ]d[x] = kr·( ln(r)·x+i·[1:(d/r)]·(1/2)·x^{2} )
x(t) = (1/a)·Anti-[ ( s /o(s)o/ int[ ln(r)·s+(i/a)·[1:(d/r)]·(1/2)·s^{2} ]d[s] )^{[o(s)o] (1/2)} ]-( ...
... ( (2/m)·kra )^{(1/2)}·t )
Ley: [ de tornado de grado d negativo ]
Sea z = re^{xi} ==>
int[r = 0]-[oo][ 2pi·i·(1/z)^{2} ]d[z] = e^{(-1)·xi}
F(r,x) = int[r = r]-[oo][ U·ln(re^{xi}+d)·(1/r)^{2} ]d[r] = U·ln(re^{xi}+d)·(1/r)
int[ F(r,x) ]d[x] = U·(1/r)·( ln(r)·x+i·[1:(d/r)]·(1/2)·x^{2} )
x(t) = (1/a)·Anti-[ ( s /o(s)o/ int[ ln(r)·s+(i/a)·[1:(d/r)]·(1/2)·s^{2} ]d[s] )^{[o(s)o] (1/2)} ]-( ...
... ( (2/m)·U·(a/r) )^{(1/2)}·t )
Ley:
Los hombres que son profesores,
no pueden generar placer sexual al prójimo,
porque la llama verde sigue la Ley,
y no se puede desear la mujer del prójimo.
Las mujeres que son profesoras,
no pueden generar dolor sexual al prójimo,
porque la llama taronja sigue la Ley,
y no se puede desear el hombre del prójimo.
Ley:
Los hombres que son profesores,
no pueden seguir la Ley usando al prójimo,
porque la llama verde sigue la Ley,
y no se puede ser señor del prójimo.
Las mujeres que son profesoras,
no pueden saltar-se la Ley usando al prójimo,
porque la llama taronja sigue la Ley,
y no se puede ser señora del prójimo.
Anexo:
Yo no soy dictador,
porque explico ciencia,
y pierdo el poder de gobernar al prójimo.
Ley:
Los hombres que son profesores,
no pueden de propiedad a des-propiedad,
con una llama taronja,
y no puede estropear.
Las mujeres que son profesoras,
pueden de des-propiedad a propiedad,
con una llama verde,
y puede reparar.
Ley:
Los hombres que son profesores,
no pueden ver porno,
que no quieren que las vean,
con una llama taronja,
robando la intimidad.
Las mujeres que son profesoras,
pueden ver porno,
que quieren que los vean
con una llama verde,
no robando la intimidad.
Ley:
Amas a un vivo,
como estás muerto,
y se puede aplicar,
destructor de un muerto a un vivo.
Amas a un vivo,
no como estás muerto,
y no se puede aplicar,
constructor de un muerto a un vivo.
Teorema:
pi es irracional.
Demostración:
arc-cot(1) = (pi/4)
arc-cot(x) = int[ ( 1/(1+(-1)·x^{2}) ) ]d[x] = ...
... int[ sum[k = 0]-[oo][ x^{2k} ] ]d[x] = sum[k = 0]-[oo][ (1/(2k+1))·x^{2k+1} ]
arc-cot(1) = sum[k = 0]-[oo][ ( 1/(2k+1) ) ]
f(k) = (1/2)·oo
arc-cot(1) = 1 = (pi/4)
pi es irracional
Ley Natural:
Podéis poner que la partitura es del Dr.Guery,
pero no explicar nada,
para tener llamas violeta y vender discos.
Yo explico ciencia y no tengo llamas violetas,
para convencer al mundo de que mi música es música buena,
porque solo tengo llamas amarillas,
y no puedo ser señor del prójimo.
Ley Musical:
[11][04][06][04] = 25k = 5·5·k
[13][04][08][04] = 29k
[17][10][12][10] = 49k = 7·7·k
[19][10][14][10] = 53k
Ley Musical:
[09][04][06][04] = 23k
[13][06][08][06] = 33k = 3·11·k
[15][10][12][10] = 47k
[19][12][14][12] = 57k = 3·19·k
Ley Musical:
[10][05][08][05] = 28k = 4·7·k
[14][07][10][07] = 38k = 2·19·k
[16][11][14][11] = 52k = 4·13·k
[20][13][16][13] = 62k = 2·31·k
Ley Musical:
[10][05][05][05] = 25k = 5·5·k
[12][07][07][07] = 33k = 3·11·k
[16][11][11][11] = 49k = 7·7·k
[18][13][13][13] = 57k = 3·19·k
Ley Musical:
[01][...][01][...][02][...][02][...] = 6
[01][...][01][01][02][...][02][...] = 6+1
[04][...][04][...][05][...][05][...] = 18 = 6·3
[04][...][04][04][05][...][05][...] = 21+1 = 3·7+1
[07][...][07][...][08][...][08][...] = 30 = 6·5
[07][...][07][07][08][...][08][...] = 36+1 = 6·6+1
[10][...][10][...][11][...][11][...] = 42 = 6·7
[10][...][10][10][11][...][11][...] = 51+1 = 3·17+1
Nudos de especie combinatoria:
Definición: [ de nudos circulares de cadena ]
B^{1} = B
B^{2} = BB
Si n >] 3 ==> B^{n} = ( BO...(n+(-2))...OB )
Definición: [ de nudos polinómicos ]
K^{1} = K doble recta mono-encadenada
K^{2} = Y camino cerrado triangular regular
K^{3} = W doble cúbica triple-encadenada
K^{4} = M camino cerrado pentagonal regular
Definición:
K^{2n+1} = doble función polinómica 2n+1 encadenada.
K^{2n} = nudo regular de camino único,
según los 2n+1 clavos de la transmisión matemática de la función polinómica.
Teorema:
Y+(-1)·(BB) = (K+B)·(K+(-B))
Y+(BB) = (K+iB)·(K+(-i)·B)
Teorema:
W+(-1)·(BOB) = (Y+KB+BB)·(K+(-B))
W+(BOB) = (Y+(-1)·KB+BB)·(K+B)
Teorema:
M+(-1)·(BOOB) = (W+YB+KBB+BOB)·(K+(-B))
M+(BOOB) = (Y+i·BB)·(Y+(-i)·BB)
Teorema:
Sea n >] 2 ==>
az^{n}+(-b)·(BO..(n+(-2))...OB) = 0 <==> z = (b/a)^{(1/n)}·B
Demostración:
az^{n}+(-b)·B^{n} = az^{n}+(-b)·(BO..(n+(-2))...OB) = 0
az^{n}+0 = az^{n}+( (-b)·B^{n}+bB^{n} ) = ( az^{n}+(-b)·B^{n} )+bB^{n} = 0+b·B^{n} ...
az^{n} = b·B^{n}
z^{n} = (a/a)·z^{n} = (1/a)·( az^{n} ) = (1/a)·( bB^{n} ) = (b/a)·B^{n}
z = ( (b/a)·B^{n} )^{(1/n)} = (b/a)^{(1/n)}·B^{(n/n)} = (b/a)^{(1/n)}·B
Teorema:
az^{2}+(-b)·BB = 0 <==> z = (b/a)^{(1/2)}·B
Teorema:
az^{2}+(-b)·(BOOB) = 0 <==> z = (b/a)^{(1/2)}·BB
Demostración:
(BOOB) = B^{4} = ( B^{2} )^{2} = BB^{2}
Teorema:
az^{2}+(-b)·Y = 0 <==> z = (b/a)^{(1/2)}·K
Teorema:
az^{2}+(-b)·M = 0 <==> z = (b/a)^{(1/2)}·Y
Demostración:
M = K^{4} = ( K^{2} )^{2} = Y^{2}
Teorema:
(1/x)·d_{x}[y] = y(x)
y(x) = sum[k = 0]-[oo][ (1/(2k)!!)·x^{2k}+(1/(2k+1)!!)·x^{2k+1} ]
Demostración:
na_{n}·x^{n+(-2)} = a_{n}·x^{n}
(n+2)·a_{n+2} = a_{n}
Sea k = p+1 ==>
(1/x)·d_{x}[ sum[k = 0]-[oo][ (1/(2k)!!)·x^{2k}+(1/(2k+1)!!)·x^{2k+1} ] ] = ...
... (1/x)·sum[k = 0]-[oo][ (1/(2k+(-2))!!)·x^{2k+(-1)}+(1/(2k+(-1))!!)·x^{2k} ] = ...
... sum[k = 0]-[oo][ (1/(2k+(-2))!!)·x^{2k+(-2)}+(1/(2k+(-1))!!)·x^{2k+(-1)} ] = ...
... sum[k = 0]-[oo][ (1/(2p)!!)·x^{2p}+(1/(2p+1)!!)·x^{2p+1} ]
Ley:
d_{t}[y] = u·(ut)·y(t)
y(t) = (1/a)·sum[k = 0]-[oo][ (1/(2k)!!)·(ut)^{2k}+(1/(2k+1)!!)·(ut)^{2k+1} ]
Teorema:
(1/x)^{2}·d_{x}[y] = y(x)
y(x) = sum[k = 0]-[oo][ (1/(3k)!!!)·x^{3k}+(1/(3k+1)!!!)·x^{3k+1}+(1/(3k+2)!!!)·x^{3k+2} ]
Demostración:
na_{n}·x^{n+(-3)} = a_{n}·x^{n}
(n+3)·a_{n+3} = a_{n}
Sea k = p+1 ==>
(1/x)^{2}·d_{x}[ sum[k = 0]-[oo][ ...
... (1/(3k)!!!)·x^{3k}+(1/(3k+1)!!!)·x^{3k+1}+(1/(3k+2)!!!)·x^{3k+2} ] ] = ...
... (1/x)^{2}·sum[k = 0]-[oo][ ...
... (1/(3k+(-3))!!!)·x^{3k+(-1)}+(1/(3k+(-2))!!!)·x^{3k}+(1/(3k+(-1))!!!)·x^{3k+1} ] = ...
... sum[k = 0]-[oo][ ...
... (1/(3k+(-3))!!!)·x^{3k+(-3)}+(1/(3k+(-2))!!!)·x^{3k+(-2)}+(1/(3k+(-1))!!!)·x^{3k+(-1)} ] = ...
... sum[k = 0]-[oo][ (1/(3p)!!!)·x^{3p}+(1/(3p+1)!!!)·x^{3p+1}+(1/(3p+2)!!!)·x^{3p+2} ]
Ley:
d_{t}[y] = u·(ut)^{2}·y(t)
y(t) = (1/a)·...
... sum[k = 0]-[oo][ (1/(3k)!!!)·(ut)^{3k}+(1/(3k+1)!!!)·(ut)^{3k+1}+(1/(3k+2)!!!)·(ut)^{3k+2} ]
Teorema: [ de espacio cociente ]
Sea F = k·< a,b > ==>
[ < x,y > ] = ( x+(-1)·(a/b)·y )·[ < 1,0 > ]
[ < x,y > ] = ( y+(-1)·(b/a)·x )·[ < 0,1 > ]
[ < 1,0 > ] = ( 1+(-1)·(a/b)·0 )·[ < 1,0 > ]
[ < 0,1 > ] = ( 1+(-1)·(b/a)·0 )·[ < 0,1 > ]
[ < a,b > ] = ( a+(-1)·(a/b)·b )·[ < 1,0 > ]
[ < a,b > ] = ( b+(-1)·(b/a)·a )·[ < 0,1 > ]
Demostración
< x,y > = (y/b)·< a,b >+( x+(-1)·(a/b)·y )·< 1,0 >
[ < x,y > ] = [ (y/b)·< a,b >+( x+(-1)·(a/b)·y )·< 1,0 > ] = ...
... [ (y/b)·< a,b > ]+[ ( x+(-1)·(a/b)·y )·< 1,0 > ] = 0+[ ( x+(-1)·(a/b)·y )·< 1,0 > ] = ...
... [ ( x+(-1)·(a/b)·y )·< 1,0 > ] = ( x+(-1)·(a/b)·y )·[ < 1,0 > ]
Teorema: [ de espacio cociente ]
Sea F = k·< a,b,a > ==>
[ < x,y,x > ] = ( x+(-1)·(a/b)·y )·[ < 1,0,1 > ]
[ < x,y,x > ] = ( y+(-1)·(b/a)·x )·[ < 0,1,0 > ]
Teorema: [ de espacio cociente ]
Sea F = k·< a,b,c > ==>
[ < 2x,y,z > ]+[ < 0,(z/c)·b,(y/b)·c > ] = ( 2x+(-1)·(a/b)·y+(-1)·(a/c)·z )·[ < 1,0,0 > ]
[ < x,2y,z > ]+[ < (z/c)·a,0,(x/a)·c > ] = ( 2y+(-1)·(b/c)·z+(-1)·(b/a)·x )·[ < 0,1,0 > ]
[ < x,y,2z > ]+[ < (y/b)·a,(x/a)·b,0 > ] = ( 2z+(-1)·(c/a)·x+(-1)·(c/b)·y )·[ < 0,0,1 > ]
Demostración
< 2x,y,z >+< 0,(z/c)·b,(y/b)·c > = ...
... ( (y/b)·< a,b,c >+(z/c)·< a,b,c > )+( 2x+(-1)·(a/b)·y+(-1)·(a/c)·z )·< 1,0,0 >
[ < 2x,y,z >+< 0,(z/c)·b,(y/b)·c > ] = ...
... [ ( (y/b)·< a,b,c >+(z/c)·< a,b,c > )+( 2x+(-1)·(a/b)·y+(-1)·(a/c)·z )·< 1,0,0 > ]
[ < 2x,y,z > ]+[ < 0,(z/c)·b,(y/b)·c > ] = ...
... [ ( (y/b)·< a,b,c > ]+[ (z/c)·< a,b,c > ) ]+[ ( 2x+(-1)·(a/b)·y+(-1)·(a/c)·z )·< 1,0,0 > ]
[ < 2x,y,z > ]+[ < 0,(z/c)·b,(y/b)·c > ] = [ ( 2x+(-1)·(a/b)·y+(-1)·(a/c)·z )·< 1,0,0 > ] = ...
... ( 2x+(-1)·(a/b)·y+(-1)·(a/c)·z )·[ < 1,0,0 > ]