int[ d_{x}[f(x^{m})] ] d[x] = ...
... f(x^{m}) = f(x^{m})
int[ d_{( f^{o(-1)}( e-[o(t)o]-sin[(-n)](y) ) )^{(1/m)}}[f^{o(-1)}( e-[o(t)o]-sin[(-n)](y) )] ] d[x] = ...
... f^{o(-1)}( f(x^{m}) ) = x^{m}
d_{x}[ sin[(-n)]-[o(t)o]-ln( f(x^{m}) ) ] = ...
... (1/f(x^{m}))·d_{x}[f(x^{m})]·(-n)·( sin(x) )^{(-1)·(n+1)})·cos(x)
d_{y}[ e-[o(t)o]-sin[(-n)](y) ] = ...
... e-[o(t)o]-sin[(-n)](y)·...
... d_{( f^{o(-1)}( e-[o(t)o]-sin[(-n)](y) ) )^{(1/m)}}[f^{o(-1)}( e-[o(t)o]-sin[(-n)](y) )]·...
... (1/(-n))·( 1/cos( ( f^{o(-1)}( e-[o(t)o]-ln[(-n)](y) ) )^{(1/m)} ) )·...
... ( sin( ( f^{o(-1)}( e-[o(t)o]-ln[(-n)](y) ) )^{(1/m)} ) )^{n+1}
d_{t}[y] = ...
... ( ((cd)·cos(d))/(( sin(d) )^{n+1}·d^{m}) )·( 1/(b^{m}+(-1)·a^{m}) )·...
... ( 1/cos(y) )·( sin(y) )^{n+1}·(y^{m}+a^{m})·(y^{m}+b^{m})
y(t) = ...
... ( ...
... ( (a^{m}+(-1)·b^{m})/(e-[o(t)o]-sin[(-n)]((-n)·( ((cd)·cos(d))/(( sin(d) )^{n+1}·d^{m}) )·t)+(-1)) )+...
... (-1)·b^{m}...
... )^{(1/m)}
d_{t}[z] = ...
... ( ((cd)·cos(d))/(( sin(d) )^{n+1}·d^{m}) )·...
... ( 1/cos(z) )·( sin(z) )^{n+1}·(z^{m}+a^{m})
z(t) = ...
... ( ( e-[o(t)o]-sin[(-n)]((-n)·( ((cd)·cos(d))/(( sin(d) )^{n+1}·d^{m}) )·t) )+(-1)·a^{m} )^{(1/m)}
No hay comentarios:
Publicar un comentario