viernes, 16 de octubre de 2020

cinematica: tren de (-b) a b con parada en (-c) y c y zero

int[ d_{x}[f(x^{n})] ] d[x] = ...

... f(x^{n}) = f(x^{n})

int[ d_{( f^{o(-1)}( e-[o(t)o]-ln[1](y) ) )^{(1/n)}}[f^{o(-1)}( e-[o(t)o]-ln[1](y) )] ] d[x] = ...

... f^{o(-1)}( f(x^{n}) ) = x^{n}

d_{x}[ ln[1]-[o(t)o]-ln( f(x^{n}) ) ] = ( 1/f(x^{n}) )·d_{x}[f(x^{n})]·(1/x)

d_{y}[ e-[o(t)o]-ln[1](y) ] = ...

... e-[o(t)o]-ln[1](y)·...

... ( d_{( f^{o(-1)}( e-[o(t)o]-ln[1](y) ) )^{(1/n)}}[f^{o(-1)}( e-[o(t)o]-ln[1](y) )] )·...

... ( f^{o(-1)}( e-[o(t)o]-ln[1](y) ) )^{(1/n)}


d_{t}[x] = (1/(b^{2}+(-1)·c^{2}))·(a/d^{2})·x(x^{2}+(-1)·c^{2})·(x^{2}+(-1)·b^{2})

x(t) = ( ( (b^{2}+(-1)·c^{2})/(1+(-1)·e-[o(t)o]-ln[1]((a/d^{2})·t)) )+c^{2} )^{(1/2)}

No hay comentarios:

Publicar un comentario