int[ d_{x}[f(x^{n})] ] d[x] = ...
... f(x^{n}) = f(x^{n})
int[ d_{( f^{o(-1)}( e-[o(t)o]-ln[1](y) ) )^{(1/n)}}[f^{o(-1)}( e-[o(t)o]-ln[1](y) )] ] d[x] = ...
... f^{o(-1)}( f(x^{n}) ) = x^{n}
d_{x}[ ln[1]-[o(t)o]-ln( f(x^{n}) ) ] = ( 1/f(x^{n}) )·d_{x}[f(x^{n})]·(1/x)
d_{y}[ e-[o(t)o]-ln[1](y) ] = ...
... e-[o(t)o]-ln[1](y)·...
... ( d_{( f^{o(-1)}( e-[o(t)o]-ln[1](y) ) )^{(1/n)}}[f^{o(-1)}( e-[o(t)o]-ln[1](y) )] )·...
... ( f^{o(-1)}( e-[o(t)o]-ln[1](y) ) )^{(1/n)}
d_{t}[x] = (1/(b^{2}+(-1)·c^{2}))·(a/d^{2})·x(x^{2}+(-1)·c^{2})·(x^{2}+(-1)·b^{2})
x(t) = ( ( (b^{2}+(-1)·c^{2})/(1+(-1)·e-[o(t)o]-ln[1]((a/d^{2})·t)) )+c^{2} )^{(1/2)}
No hay comentarios:
Publicar un comentario