lunes, 12 de octubre de 2020

ecuacions diferencials sinus-exponencial-potencial

d_{x}[ e[n]-sin-arc[m](x) ] = d_{x}[ x^{m}e^{nx}sin(x) ] = ...

... (1/x)·( m·e[n]-sin-arc[m](x)+nx·e[n]-sin-arc[m](x)+...

... x·( x^{2m}e^{2nx}+(-1)·( e[n]-sin-arc[m](x) )^{2} )^{(1/2)} )


d_{y}[ arc[m]-sin-e[n](y) ]  = ...

... arc[m]-sin-e[n](y)·( 1/( m·y+ny·arc[m]-sin-e[n](y)+...

... arc[m]-sin-e[n](y)·( ( arc[m]-sin-e[n](y) )^{2m}e^{2n·arc[m]-sin-e[n](y)}+(-1)·y^{2} )^{(1/2)} ) )


f(x) = (1/y)·( (m+ny)·e[n]-sin-arc[m](y)+y·e[n]-cos-arc[m](y) )·d_{x}[y]

int[ f(x) ] d[x] = y^{m}·e^{nx}·sin(y)

int[ f(x) ] d[x] = e[n]-sin-arc[m](y)

arc[m]-sin-e[n]( int[ f(x) ] d[x] ) = y(x)

No hay comentarios:

Publicar un comentario