d_{x}[ e[n]-sin-arc[m](x) ] = d_{x}[ x^{m}e^{nx}sin(x) ] = ...
... (1/x)·( m·e[n]-sin-arc[m](x)+nx·e[n]-sin-arc[m](x)+...
... x·( x^{2m}e^{2nx}+(-1)·( e[n]-sin-arc[m](x) )^{2} )^{(1/2)} )
d_{y}[ arc[m]-sin-e[n](y) ] = ...
... arc[m]-sin-e[n](y)·( 1/( m·y+ny·arc[m]-sin-e[n](y)+...
... arc[m]-sin-e[n](y)·( ( arc[m]-sin-e[n](y) )^{2m}e^{2n·arc[m]-sin-e[n](y)}+(-1)·y^{2} )^{(1/2)} ) )
f(x) = (1/y)·( (m+ny)·e[n]-sin-arc[m](y)+y·e[n]-cos-arc[m](y) )·d_{x}[y]
int[ f(x) ] d[x] = y^{m}·e^{nx}·sin(y)
int[ f(x) ] d[x] = e[n]-sin-arc[m](y)
arc[m]-sin-e[n]( int[ f(x) ] d[x] ) = y(x)
No hay comentarios:
Publicar un comentario