sábado, 17 de octubre de 2020

ecuacions diferencials exponencial-polinomi

int[ d_{x}[f(x^{m})] ] d[x] = ...

... f(x^{m}) = f(x^{m})

int[ d_{( f^{o(-1)}( e-[o(t)o]-e[(-n)](y) ) )^{(1/m)}}[f^{o(-1)}( e-[o(t)o]-e[(-n)](y) )] ] d[x] = ...

... f^{o(-1)}( f(x^{m}) ) = x^{m}

d_{x}[ e[(-n)]-[o(t)o]-ln( f(x^{m}) ) ] = (1/f(x^{m}))·d_{x}[f(x^{m})]·(-n)·e^{(-n)·x}

d_{y}[ e-[o(t)o]-e[(-n)](y) ] = ...

... e-[o(t)o]-e[(-n)](y)·...

... d_{( f^{o(-1)}( e-[o(t)o]-e[(-n)](y) ) )^{(1/m)}}[f^{o(-1)}(e-[o(t)o]-e[(-n)](y))]·...

... (1/(-n))·e^{n·( f^{o(-1)}( e-[o(t)o]-e[(-n)](y) ) )^{(1/m)}}


d_{t}[y] = ( (cd)/(e^{nd}d^{m}) )·( 1/(b^{m}+(-1)a^{m}) )·e^{ny}·(y^{m}+a^{m})·(y^{m}+b^{m})


y(t) = ...

... ( ...

... ( (a^{m}+(-1)·b^{m})/(e-[o(t)o]-e[(-n)]((-n)·( (cd)/(e^{nd}·d^{m}) )·t)+(-1)) )+...

... (-1)·b^{m}...

... )^{(1/m)}

No hay comentarios:

Publicar un comentario