d_{t}[x] = a·( 1/(2b^{2}) )·x( x^{2}+(-1)·b^{2})
( ( 1/(x+(-b)) )+( 1/(x+b) )+(-2)·( 1/x ) )·d_{t}[x] = a
( ( 2x/(x+(-b))(x+b) )+(-2)·( 1/x ) )·d_{t}[x] = a
ln(x+(-b))+ln(x+b)+(-1)·ln(x^{2}) = at
1+(-1)·(b^{2}/x^{2}) = e^{at}
(b^{2}/x^{2}) = 1+(-1)·e^{at}
x(t) = b·( (1+(-1)·e^{at}) )^{(-1)·(1/2)}
d_{t}[x] = (ba)·(1/2)·( (1+(-1)·e^{at}) )^{(-1)·(3/2)}·e^{at}
No hay comentarios:
Publicar un comentario