lunes, 27 de enero de 2020
lagranià para-magnétic eléctric
d_{tt}^{2}[x]= ( d_{t}[x]^{n} )
d_{tt}[x(t)] = a^{(1/2)+(-1)(n/4)}·...
... ( a^{(-1)(1+(-n))/4)} )^{n/(1+(-n))}·a^{(-1)(1+(-n))/2)} = 1
( x(t) )^{n} = a^{(n/2)+(-1)(n^{2}/4)}·...
... ( a^{(-1)(1+(-n))(2+(-n))/4} )^{n/(1+(-n))} = 1
( x(t) ) = a^{(1/2)+(-1)(n/4)}·...
... ( a^{(-1)(1+(-n))/4} )^{(2+(-n))/(1+(-n))}·t^{( (2+(-n))/(1+(-n)) )}
d_{tt}[x(t)] = a^{(1/4)+(-1)(n/4)}·...
... ( a^{(-1)(1+(-n))/4) )^{n/(1+(-n))}·a^{(-1)(1+(-n))/2)} = a^{(-1)(1/4)}
( x(t) )^{n} = a^{(n/4)+(-1)(n^{2}/4)}·...
... ( a^{(-1)(1+(-n))(2+(-n))/4} )^{n/(1+(-n))} = a^{(-1)(n/4)}
( x(t) ) = a^{(-1)(1/4)+(-1)(n/4)}·...
... ( a^{(-1)(1+(-n))/4} )^{(2+(-n))/(1+(-n))}·t^{(2+(-n))/(1+(-n))}
d_{tt}^{2}[x]= ( a^{(n+(-1))(1/4))}·d_{t}[x]^{n}/c^{n} )
m·d_{tt}^{2}[x]= (k_{e}·pq)·d_{t}[x]^{n}/c^{n} )
a^{(n+(-1))(1/4))} = ( (k_{e}·pq)/(mc^{n}) )
a = ( (k_{e}·pq)/(mc^{n}) )^{( 1/(n+(-1))(1/4)) )}
Suscribirse a:
Enviar comentarios (Atom)
No hay comentarios:
Publicar un comentario