d_{t}[ F(x,y,z) ] = rot[ E(x,y,z) ]
F(x,y,z) = kq·(1/2)·( x_{k} )^{2} [o(t)o] ( x_{k} )^{[o(t)o](-1)} [o(t)o] ...
... ( ∫ [ f(y_{i}) ] d[t] + (-1)·∫ [ f(z_{j}) ] d[t] ).
d_{t}[ D(x,y,z) ] = rot[ B(x,y,z) ]
D(x,y,z) = (-1)·kq·(1/2)·( x_{k} )^{2} [o(t)o] ( x_{k} )^{[o(t)o](-1)} [o(t)o] ...
... ( ∫ [ f( d_{t}[y_{i}]·t ) ] d[t] + (-1)·∫ [ f( d_{t}[z_{j}]·t ) ] d[t] ).
div[ F(x,y,z) ] = kq·∑ ( x_{k}/d_{t}[x_{k}] )·( f(y_{i})+(-1)·f(z_{j}) ).
div[ D(x,y,z) ] = (-1)·kq·∑ ( x_{k}/d_{t}[x_{k}] )·( f( d_{t}[y_{i}]·t )+(-1)·f( d_{t}[z_{j}]·t ) ).
∯ [ F(x,y,z) ] d[(yz,zx,xy)] = ...
∯ [ F(x,y,z) ] d[(yz,zx,xy)] = ...
... kq·∑ ( x_{k} )^{2} [o(t)o] ( x_{k} )^{[o(x)o](-1)} [o(t)o] ...
... ( ∫ [ ∫ [ f(y_{i}) ] d[t] ] d[y_{i}]·z_{j} + (-1)·∫ [ ∫ [ f(z_{j}) ] d[t] ] d[z_{j}]·y_{i} ).
∯ [ D(x,y,z) ] d[(yz,zx,xy)] = ...
∯ [ D(x,y,z) ] d[(yz,zx,xy)] = ...
... (-1)·kq·∑ ( x_{k} )^{2} [o(t)o] ( x_{k} )^{[o(x)o](-1)} [o(t)o] ...
... ( ∫ [ ∫ [ f( d_{t}[y_{i}]·t ) ] d[t] ] d[y_{i}]·z_{j} + (-1)·∫ [ ∫ [ f( d_{t}[z_{j}]·t ) ] d[t] ] d[z_{j}]·y_{i} ).
m·d_{tt}^{2}[x_{k}] = p( F(x,y,z)+D(x,y,z) )
x_{k} = V_{k}·t
No hay comentarios:
Publicar un comentario