camp eléctric:
E_{e}(x,y,z) = kq·< x^{n}/(ct)^{n} , y^{n}/(ct)^{n} , z^{n}/(ct)^{n} >
flux[ E_{e}(x,y,z) ] = kq·(1/(ct)^{n})·Q[n]-[ (x_{i})^{-1} ](x,y,z)·xyz
div[ E_{e}(x,y,z) ] = n·kq·( (1/(ct)^{n})·Q[n+(-1)](x,y,z) +...
... (-1)(c/(ct)^{n+1})·Q[n]-[ d_{t}[x_{i}]^{(-1)} ](x,y,z)) )
camp gravitatori:
E_{g}(x,y,z) = (-1)·kq·< x^{n}/(ct)^{n} , y^{n}/(ct)^{n} , z^{n}/(ct)^{n} >
flux[ E_{g}(x,y,z) ] = (-1)·kq·(1/(ct))·Q[n]-[ (x_{i})^{-1} ](x,y,z)·xyz
div[ E_{g}(x,y,z) ] = (-1)·n·kq·( (1/(ct)^{n})·Q[n+(-1)](x,y,z) + ...
... (-1)(c/(ct)^{n+1})·Q[n]-[ d_{t}[x_{i}]^{(-1)} ](x,y,z)) )
ecuacions de camp:
flux[ E_{e}(x,y,z) ] = ∭ [ div[ E_{e}(x,y,z) ] ] d[x]d[y]d[z]
flux[ E_{g}(x,y,z) ] = ∭ [ div[ E_{g}(x,y,z) ] ] d[x]d[y]d[z]
ecuacions de camp del temps:
d_{t}[ div[ E_{e}(x,y,z) ] ] = Lap[ E_{e}(x,y,z) ] [o] (d_{t}[x]+d_{t}[y]+d_{t}[z])
d_{t}[ div[ E_{g}(x,y,z) ] ] = Lap[ E_{g}(x,y,z) ] [o] (d_{t}[x]+d_{t}[y]+d_{t}[z])
No hay comentarios:
Publicar un comentario