Si ( a_{1} >] 0 & a_{n+m} >] a_{n}+a_{m} ) ==> a_{n} és creishent
a_{n+1} >] a_{n}+a_{1} >] a_{n}
Si ( a_{1} [< 0 & a_{n+m} [< a_{n}+a_{m} ) ==> a_{n} és decreishent
a_{n+1} [< a_{n}+a_{1} [< a_{n}
Si a_{n+m} >] a_{n}+a_{m} ==> (a_{n}/n) >] a_{1}
a_{n} >] a_{1}+...(n)...+a_{1} = na_{1}
Si a_{n+m} [< a_{n}+a_{m} ==> (a_{n}/n) [< a_{1}
a_{n} [< a_{1}+...(n)...+a_{1} = na_{1}
Si ( n >] a_{n} & a_{n+m} >] a_{n}+a_{m} ) ==> 1 >] (a_{n}/n) >] a_{1}
n >] a_{n}
Si ( n [< a_{n} & a_{n+m} [< a_{n}+a_{m} ) ==> 1 [< (a_{n}/n) [< a_{1}
n [< a_{n}
No hay comentarios:
Publicar un comentario