domingo, 26 de enero de 2020
para-magnetisme eléctric y para-magnetisme gravitatori
camp para-mangétic eléctric:
B_{e}(d_{t}[x]·t,d_{t}[y]·t,d_{t}[z]·t) = ...
... (-1)·kq·< (d_{t}[x]·t)^{n}/(ct)^{n} , (d_{t}[y]·t)^{n}/(ct)^{n} , (d_{t}[z]·t)^{n}/(ct)^{n} >
flux[ B_{e}(d_{t}[x]·t,d_{t}[y]·t,d_{t}[z]·t) ] = ...
... (-1)·kq·(1/(ct)^{n})·A[n]-[ (x_{i})^{(-1)} ](d_{t}[x]·t,d_{t}[y]·t,d_{t}[z]·t)·xyz
div[ B_{e}(d_{t}[x]·t,d_{t}[y]·t,d_{t}[z]·t) ] = ...
... (-1)·n·kq·( ...
... (1/(ct)^{n})·A[n+(-1)](d_{t}[x]·t,d_{t}[y]·t,d_{t}[z]·t) + ...
... (-1)(c/(ct)^{n+1}A[n]-[ d_{t}[x_{i}]^{(-1)} ](d_{t}[x]·t,d_{t}[y]·t,d_{t}[z]·t)) ...
... )
camp para-mangétic gravitatori:
B_{g}(d_{t}[x]·t,d_{t}[y]·t,d_{t}[z]·t) = ...
... kq·< (d_{t}[x]·t)^{n}/(ct)^{n} , (d_{t}[y]·t)^{n}/(ct)^{n} , (d_{t}[z]·t)^{n}/(ct)^{n} >
flux[ B_{g}(d_{t}[x]·t,d_{t}[y]·t,d_{t}[z]·t) ] = ...
... kq·(1/(ct)^{n})·A[n]-[ (x_{i})^{(-1)} ](d_{t}[x]·t,d_{t}[y]·t,d_{t}[z]·t)·xyz
div[ B_{g}(d_{t}[x]·t,d_{t}[y]·t,d_{t}[z]·t) ] = ...
... n·kq·( ...
... (1/(ct)^{n})·A[n+(-1)](d_{t}[x]·t,d_{t}[y]·t,d_{t}[z]·t) + ...
... (-1)(c/(ct)^{n+1}A[n]-[ d_{t}[x_{i}]^{(-1)} ](d_{t}[x]·t,d_{t}[y]·t,d_{t}[z]·t) ...
... )
Suscribirse a:
Enviar comentarios (Atom)
No hay comentarios:
Publicar un comentario