martes, 28 de enero de 2020

física: camps para-geométric-eléctric

E_{e}(x,y,z) = kq·< (x^{m}+(-1))/(x^{n}+(-1)) , (y^{m}+(-1))/(y^{n}+(-1)) , (z^{m}+(-1))/(z^{n}+(-1)) >
E_{e}(1,1,1) = kq·< (m/n) , (m/n) , (m/n) >


flux[ E_{e}(x,y,z) ] = ...
... kq·( (x^{m}+(-1))/(x^{n+1}+(-x)) + (y^{m}+(-1))/(y^{n+1}+(-y)) + (z^{m}+(-1))/(z^{n+1}+(-z))) )·xyz


flux[ E_{e}(1,1,1) ] = 3kq·(m/n)
flux[ E_{e}(0,1,1) ] = kq
flux[ E_{e}(0,0,1) ] = 0
flux[ E_{e}(0,0,0) ] = 0


div[ E_{e}(x,y,z) ] =  kq·( ...
... mx^{m+(-1)}/(x^{n}+(-1)) + ...
... my^{m+(-1)}/(y^{n}+(-1)) + ...
... mz^{m+(-1)}/(z^{n}+(-1)) ...
... )+...
... (-1)( ...
... nx^{n+(-1)}(x^{m}+(-1))/(x^{n}+(-1))^{2} + ...
... ny^{n+(-1)}(y^{m}+(-1))/(y^{n}+(-1))^{2} + ...
... nz^{n+(-1)}(z^{m}+(-1))/(z^{n}+(-1))^{2}
... ) ...
... )


div[ E_{e}(1,1,1) ] =  kq·( ...
... (m/n)(1/(x+(-1))) + ...
... (m/n)(1/(y+(-1))) + ...
... (m/n)(1/(z+(-1))) ...
... )+...
... (-1)( ...
... (nm/n^{2})(1/(x+(-1)) + ...
... (nm/n^{2})(1/(y+(-1)) + ...
... (nm/n^{2})(1/(z+(-1))
... ) ...
... ) = 3kq

No hay comentarios:

Publicar un comentario