domingo, 26 de enero de 2020

ecuacions diferencials: binomi

d_{t}[x]^{n}+d_{t}[y]^{n} = (x+y)^{2}


x = ( ( 2^{(1/n)}·(n+(-2))/n )·t )^{( n/(n+(-2)) )}
y = ( ( 2^{(1/n)}·(n+(-2))/n )·t )^{( n/(n+(-2)) )}


d_{t}[x]^{n}+d_{t}[y]^{n} = (x+y)^{3}


x = ( ( 2^{(2/n)}·(n+(-3))/n )·t )^{( n/(n+(-3)) )}
y = ( ( 2^{(2/n)}·(n+(-3))/n )·t )^{( n/(n+(-3)) )}


d_{t}[x]^{n}+d_{t}[y]^{n} = (x+y)^{m}


x = ( ( 2^{((m+(-1))/n)}·(n+(-m))/n )·t )^{( n/(n+(-m)) )}
y = ( ( 2^{((m+(-1))/n)}·(n+(-m))/n )·t )^{( n/(n+(-m)) )}


d_{t}[x]^{n}+d_{t}[y]^{n} = (x+y)^{(1/m)}


x = ( ( 2^{((1/m)+(-1))}·(n+(-1)(1/m))/n )·t )^{( n/(n+(-1)(1/m)) )}
y = ( ( 2^{((1/m)+(-1))}·(n+(-1)(1/m))/n )·t )^{( n/(n+(-1)(1/m)) )}


No hay comentarios:

Publicar un comentario